Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3
Evaluate .
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Evaluate .
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.4.3
Multiply by .
Step 1.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.6
Combine terms.
Step 1.6.1
Subtract from .
Step 1.6.2
Add and .
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
By the Sum Rule, the derivative of with respect to is .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
Differentiate using the Power Rule which states that is where .
Step 2.6
Move to the left of .
Step 2.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.8
Differentiate using the Power Rule which states that is where .
Step 2.9
Multiply by .
Step 2.10
Simplify.
Step 2.10.1
Apply the distributive property.
Step 2.10.2
Combine terms.
Step 2.10.2.1
Multiply by .
Step 2.10.2.2
Multiply by .
Step 2.10.3
Reorder terms.
Step 3
Step 3.1
Substitute for and for .
Step 3.2
Since the two sides have been shown to be equivalent, the equation is an identity.
is an identity.
is an identity.
Step 4
Set equal to the integral of .
Step 5
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
Split the single integral into multiple integrals.
Step 5.3
Since is constant with respect to , move out of the integral.
Step 5.4
By the Power Rule, the integral of with respect to is .
Step 5.5
Apply the constant rule.
Step 5.6
Combine and .
Step 5.7
Simplify.
Step 5.8
Reorder terms.
Step 6
Since the integral of will contain an integration constant, we can replace with .
Step 7
Set .
Step 8
Step 8.1
Differentiate with respect to .
Step 8.2
Differentiate using the Sum Rule.
Step 8.2.1
Simplify each term.
Step 8.2.1.1
Combine and .
Step 8.2.1.2
Combine and .
Step 8.2.2
By the Sum Rule, the derivative of with respect to is .
Step 8.3
Evaluate .
Step 8.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.2
By the Sum Rule, the derivative of with respect to is .
Step 8.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.4
Differentiate using the Power Rule which states that is where .
Step 8.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.6
Differentiate using the Power Rule which states that is where .
Step 8.3.7
Combine and .
Step 8.3.8
Combine and .
Step 8.3.9
Cancel the common factor of .
Step 8.3.9.1
Cancel the common factor.
Step 8.3.9.2
Divide by .
Step 8.3.10
Multiply by .
Step 8.4
Differentiate using the function rule which states that the derivative of is .
Step 8.5
Simplify.
Step 8.5.1
Apply the distributive property.
Step 8.5.2
Multiply by .
Step 8.5.3
Reorder terms.
Step 9
Step 9.1
Move all terms not containing to the right side of the equation.
Step 9.1.1
Add to both sides of the equation.
Step 9.1.2
Add to both sides of the equation.
Step 9.1.3
Combine the opposite terms in .
Step 9.1.3.1
Reorder the factors in the terms and .
Step 9.1.3.2
Add and .
Step 9.1.3.3
Add and .
Step 9.1.3.4
Add and .
Step 9.1.3.5
Add and .
Step 10
Step 10.1
Integrate both sides of .
Step 10.2
Evaluate .
Step 10.3
Split the single integral into multiple integrals.
Step 10.4
Since is constant with respect to , move out of the integral.
Step 10.5
By the Power Rule, the integral of with respect to is .
Step 10.6
Apply the constant rule.
Step 10.7
Combine and .
Step 10.8
Simplify.
Step 10.9
Reorder terms.
Step 11
Substitute for in .
Step 12
Step 12.1
Simplify each term.
Step 12.1.1
Combine and .
Step 12.1.2
Combine and .
Step 12.2
Apply the distributive property.
Step 12.3
Multiply by .
Step 12.4
Combine and .