Enter a problem...
Calculus Examples
if
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
By the Power Rule, the integral of with respect to is .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Combine and .
Step 3.2.2.1.2
Apply the distributive property.
Step 3.2.2.1.3
Combine and .
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Step 3.4.1
Factor out of .
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Factor out of .
Step 3.4.1.3
Factor out of .
Step 3.4.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.3
Simplify terms.
Step 3.4.3.1
Combine and .
Step 3.4.3.2
Combine the numerators over the common denominator.
Step 3.4.4
Move to the left of .
Step 3.4.5
Combine and .
Step 3.4.6
Rewrite as .
Step 3.4.7
Multiply by .
Step 3.4.8
Combine and simplify the denominator.
Step 3.4.8.1
Multiply by .
Step 3.4.8.2
Raise to the power of .
Step 3.4.8.3
Raise to the power of .
Step 3.4.8.4
Use the power rule to combine exponents.
Step 3.4.8.5
Add and .
Step 3.4.8.6
Rewrite as .
Step 3.4.8.6.1
Use to rewrite as .
Step 3.4.8.6.2
Apply the power rule and multiply exponents, .
Step 3.4.8.6.3
Combine and .
Step 3.4.8.6.4
Cancel the common factor of .
Step 3.4.8.6.4.1
Cancel the common factor.
Step 3.4.8.6.4.2
Rewrite the expression.
Step 3.4.8.6.5
Evaluate the exponent.
Step 3.4.9
Simplify the numerator.
Step 3.4.9.1
Combine using the product rule for radicals.
Step 3.4.9.2
Multiply by .
Step 3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.5.1
First, use the positive value of the to find the first solution.
Step 3.5.2
Next, use the negative value of the to find the second solution.
Step 3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Simplify the constant of integration.
Step 5
Since is positive in the initial condition , only consider to find the . Substitute for and for .
Step 6
Step 6.1
Rewrite the equation as .
Step 6.2
Multiply both sides by .
Step 6.3
Simplify.
Step 6.3.1
Simplify the left side.
Step 6.3.1.1
Simplify .
Step 6.3.1.1.1
Simplify the numerator.
Step 6.3.1.1.1.1
Raising to any positive power yields .
Step 6.3.1.1.1.2
Add and .
Step 6.3.1.1.2
Cancel the common factor of .
Step 6.3.1.1.2.1
Cancel the common factor.
Step 6.3.1.1.2.2
Rewrite the expression.
Step 6.3.2
Simplify the right side.
Step 6.3.2.1
Multiply by .
Step 6.4
Solve for .
Step 6.4.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 6.4.2
Simplify each side of the equation.
Step 6.4.2.1
Use to rewrite as .
Step 6.4.2.2
Simplify the left side.
Step 6.4.2.2.1
Simplify .
Step 6.4.2.2.1.1
Multiply the exponents in .
Step 6.4.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 6.4.2.2.1.1.2
Cancel the common factor of .
Step 6.4.2.2.1.1.2.1
Cancel the common factor.
Step 6.4.2.2.1.1.2.2
Rewrite the expression.
Step 6.4.2.2.1.2
Simplify.
Step 6.4.2.3
Simplify the right side.
Step 6.4.2.3.1
Raise to the power of .
Step 6.4.3
Divide each term in by and simplify.
Step 6.4.3.1
Divide each term in by .
Step 6.4.3.2
Simplify the left side.
Step 6.4.3.2.1
Cancel the common factor of .
Step 6.4.3.2.1.1
Cancel the common factor.
Step 6.4.3.2.1.2
Divide by .
Step 6.4.3.3
Simplify the right side.
Step 6.4.3.3.1
Cancel the common factor of and .
Step 6.4.3.3.1.1
Factor out of .
Step 6.4.3.3.1.2
Cancel the common factors.
Step 6.4.3.3.1.2.1
Factor out of .
Step 6.4.3.3.1.2.2
Cancel the common factor.
Step 6.4.3.3.1.2.3
Rewrite the expression.
Step 7
Step 7.1
Substitute for .
Step 7.2
Simplify the numerator.
Step 7.2.1
To write as a fraction with a common denominator, multiply by .
Step 7.2.2
Combine and .
Step 7.2.3
Combine the numerators over the common denominator.
Step 7.2.4
Move to the left of .
Step 7.2.5
Combine and .
Step 7.2.6
Reduce the expression by cancelling the common factors.
Step 7.2.6.1
Reduce the expression by cancelling the common factors.
Step 7.2.6.1.1
Factor out of .
Step 7.2.6.1.2
Factor out of .
Step 7.2.6.1.3
Cancel the common factor.
Step 7.2.6.1.4
Rewrite the expression.
Step 7.2.6.2
Divide by .