Enter a problem...
Calculus Examples
Step 1
Step 1.1
Divide each term in by and simplify.
Step 1.1.1
Divide each term in by .
Step 1.1.2
Simplify the left side.
Step 1.1.2.1
Cancel the common factor of .
Step 1.1.2.1.1
Cancel the common factor.
Step 1.1.2.1.2
Divide by .
Step 1.2
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Simplify the expression.
Step 2.3.2.1
Negate the exponent of and move it out of the denominator.
Step 2.3.2.2
Multiply the exponents in .
Step 2.3.2.2.1
Apply the power rule and multiply exponents, .
Step 2.3.2.2.2
Move to the left of .
Step 2.3.2.2.3
Rewrite as .
Step 2.3.3
Integrate by parts using the formula , where and .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
Simplify.
Step 2.3.5.1
Multiply by .
Step 2.3.5.2
Multiply by .
Step 2.3.6
Let . Then , so . Rewrite using and .
Step 2.3.6.1
Let . Find .
Step 2.3.6.1.1
Differentiate .
Step 2.3.6.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.6.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.6.1.4
Multiply by .
Step 2.3.6.2
Rewrite the problem using and .
Step 2.3.7
Since is constant with respect to , move out of the integral.
Step 2.3.8
The integral of with respect to is .
Step 2.3.9
Rewrite as .
Step 2.3.10
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .