Enter a problem...
Calculus Examples
dydx=9x2y2dydx=9x2y2
Step 1
Step 1.1
Multiply both sides by 1y2.
1y2dydx=1y2(9x2y2)
Step 1.2
Simplify.
Step 1.2.1
Rewrite using the commutative property of multiplication.
1y2dydx=91y2(x2y2)
Step 1.2.2
Combine 9 and 1y2.
1y2dydx=9y2(x2y2)
Step 1.2.3
Cancel the common factor of y2.
Step 1.2.3.1
Factor y2 out of x2y2.
1y2dydx=9y2(y2x2)
Step 1.2.3.2
Cancel the common factor.
1y2dydx=9y2(y2x2)
Step 1.2.3.3
Rewrite the expression.
1y2dydx=9x2
1y2dydx=9x2
1y2dydx=9x2
Step 1.3
Rewrite the equation.
1y2dy=9x2dx
1y2dy=9x2dx
Step 2
Step 2.1
Set up an integral on each side.
∫1y2dy=∫9x2dx
Step 2.2
Integrate the left side.
Step 2.2.1
Apply basic rules of exponents.
Step 2.2.1.1
Move y2 out of the denominator by raising it to the -1 power.
∫(y2)-1dy=∫9x2dx
Step 2.2.1.2
Multiply the exponents in (y2)-1.
Step 2.2.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
∫y2⋅-1dy=∫9x2dx
Step 2.2.1.2.2
Multiply 2 by -1.
∫y-2dy=∫9x2dx
∫y-2dy=∫9x2dx
∫y-2dy=∫9x2dx
Step 2.2.2
By the Power Rule, the integral of y-2 with respect to y is -y-1.
-y-1+C1=∫9x2dx
Step 2.2.3
Rewrite -y-1+C1 as -1y+C1.
-1y+C1=∫9x2dx
-1y+C1=∫9x2dx
Step 2.3
Integrate the right side.
Step 2.3.1
Since 9 is constant with respect to x, move 9 out of the integral.
-1y+C1=9∫x2dx
Step 2.3.2
By the Power Rule, the integral of x2 with respect to x is 13x3.
-1y+C1=9(13x3+C2)
Step 2.3.3
Simplify the answer.
Step 2.3.3.1
Rewrite 9(13x3+C2) as 9(13)x3+C2.
-1y+C1=9(13)x3+C2
Step 2.3.3.2
Simplify.
Step 2.3.3.2.1
Combine 9 and 13.
-1y+C1=93x3+C2
Step 2.3.3.2.2
Cancel the common factor of 9 and 3.
Step 2.3.3.2.2.1
Factor 3 out of 9.
-1y+C1=3⋅33x3+C2
Step 2.3.3.2.2.2
Cancel the common factors.
Step 2.3.3.2.2.2.1
Factor 3 out of 3.
-1y+C1=3⋅33(1)x3+C2
Step 2.3.3.2.2.2.2
Cancel the common factor.
-1y+C1=3⋅33⋅1x3+C2
Step 2.3.3.2.2.2.3
Rewrite the expression.
-1y+C1=31x3+C2
Step 2.3.3.2.2.2.4
Divide 3 by 1.
-1y+C1=3x3+C2
-1y+C1=3x3+C2
-1y+C1=3x3+C2
-1y+C1=3x3+C2
-1y+C1=3x3+C2
-1y+C1=3x3+C2
Step 2.4
Group the constant of integration on the right side as K.
-1y=3x3+K
-1y=3x3+K
Step 3
Step 3.1
Find the LCD of the terms in the equation.
Step 3.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
y,1,1
Step 3.1.2
The LCM of one and any expression is the expression.
y
y
Step 3.2
Multiply each term in -1y=3x3+K by y to eliminate the fractions.
Step 3.2.1
Multiply each term in -1y=3x3+K by y.
-1yy=3x3y+Ky
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of y.
Step 3.2.2.1.1
Move the leading negative in -1y into the numerator.
-1yy=3x3y+Ky
Step 3.2.2.1.2
Cancel the common factor.
-1yy=3x3y+Ky
Step 3.2.2.1.3
Rewrite the expression.
-1=3x3y+Ky
-1=3x3y+Ky
-1=3x3y+Ky
-1=3x3y+Ky
Step 3.3
Solve the equation.
Step 3.3.1
Rewrite the equation as 3x3y+Ky=-1.
3x3y+Ky=-1
Step 3.3.2
Factor y out of 3x3y+Ky.
Step 3.3.2.1
Factor y out of 3x3y.
y(3x3)+Ky=-1
Step 3.3.2.2
Factor y out of Ky.
y(3x3)+yK=-1
Step 3.3.2.3
Factor y out of y(3x3)+yK.
y(3x3+K)=-1
y(3x3+K)=-1
Step 3.3.3
Divide each term in y(3x3+K)=-1 by 3x3+K and simplify.
Step 3.3.3.1
Divide each term in y(3x3+K)=-1 by 3x3+K.
y(3x3+K)3x3+K=-13x3+K
Step 3.3.3.2
Simplify the left side.
Step 3.3.3.2.1
Cancel the common factor of 3x3+K.
Step 3.3.3.2.1.1
Cancel the common factor.
y(3x3+K)3x3+K=-13x3+K
Step 3.3.3.2.1.2
Divide y by 1.
y=-13x3+K
y=-13x3+K
y=-13x3+K
Step 3.3.3.3
Simplify the right side.
Step 3.3.3.3.1
Move the negative in front of the fraction.
y=-13x3+K
y=-13x3+K
y=-13x3+K
y=-13x3+K
y=-13x3+K