Calculus Examples

Approximate Using Euler's Method (dy)/(dt)=sin(t) , y(0)=1 , t=0.5 , h=0.05
dydt=sin(t) , y(0)=1 , t=0.5 , h=0.05
Step 1
Define f(t,y) such that dydt=f(t,y).
f(t,y)=sin(t)
Step 2
Find f(0,1).
Tap for more steps...
Step 2.1
Substitute 0 for t and 1 for y.
f(0,1)=sin(0)
Step 2.2
Evaluate sin(0).
f(0,1)=0
f(0,1)=0
Step 3
Use the recursive formula y1=y0+hf(t0,y0) to find y1.
Tap for more steps...
Step 3.1
Substitute.
y1=1+0.050
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Multiply 0.05 by 0.
y1=1+0
Step 3.2.2
Add 1 and 0.
y1=1
y1=1
y1=1
Step 4
Use the recursive formula t1=t0+h to find t1.
Tap for more steps...
Step 4.1
Substitute.
t1=0+0.05
Step 4.2
Add 0 and 0.05.
t1=0.05
t1=0.05
Step 5
Find f(0.05,1).
Tap for more steps...
Step 5.1
Substitute 0.05 for t and 1 for y.
f(0.05,1)=sin(0.05)
Step 5.2
Evaluate sin(0.05).
f(0.05,1)=0.04997916
f(0.05,1)=0.04997916
Step 6
Use the recursive formula y2=y1+hf(t1,y1) to find y2.
Tap for more steps...
Step 6.1
Substitute.
y2=1+0.050.04997916
Step 6.2
Simplify.
Tap for more steps...
Step 6.2.1
Multiply 0.05 by 0.04997916.
y2=1+0.00249895
Step 6.2.2
Add 1 and 0.00249895.
y2=1.00249895
y2=1.00249895
y2=1.00249895
Step 7
Use the recursive formula t2=t1+h to find t2.
Tap for more steps...
Step 7.1
Substitute.
t2=0.05+0.05
Step 7.2
Add 0.05 and 0.05.
t2=0.1
t2=0.1
Step 8
Continue in the same manner until the desired values are approximated.
Step 9
List the approximations in a table.
tnyn010.0510.11.002498950.151.007490620.21.014962530.251.0248960.31.03726620.351.052042210.41.06918710.451.088658010.51.11040629
 [x2  12  π  xdx ]