Enter a problem...
Calculus Examples
Step 1
Step 1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | + | + | + | + |
Step 1.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | + | + |
Step 1.3
Multiply the new quotient term by the divisor.
- | + | + | + | + | |||||||||
+ | - |
Step 1.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | + | + | |||||||||
- | + |
Step 1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ |
Step 1.6
Pull the next terms from the original dividend down into the current dividend.
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + |
Step 1.7
Divide the highest order term in the dividend by the highest order term in divisor .
+ | |||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + |
Step 1.8
Multiply the new quotient term by the divisor.
+ | |||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - |
Step 1.9
The expression needs to be subtracted from the dividend, so change all the signs in
+ | |||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + |
Step 1.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | |||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ |
Step 1.11
Pull the next terms from the original dividend down into the current dividend.
+ | |||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + |
Step 1.12
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | ||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + |
Step 1.13
Multiply the new quotient term by the divisor.
+ | + | ||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - |
Step 1.14
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | ||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + |
Step 1.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | ||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ |
Step 1.16
Pull the next terms from the original dividend down into the current dividend.
+ | + | ||||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + |
Step 1.17
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | + | |||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + |
Step 1.18
Multiply the new quotient term by the divisor.
+ | + | + | |||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
+ | - |
Step 1.19
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | + | |||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + |
Step 1.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | + | |||||||||||
- | + | + | + | + | |||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ | + | ||||||||||||
- | + | ||||||||||||
+ |
Step 1.21
The final answer is the quotient plus the remainder over the divisor.
Step 2
Split the single integral into multiple integrals.
Step 3
By the Power Rule, the integral of with respect to is .
Step 4
By the Power Rule, the integral of with respect to is .
Step 5
By the Power Rule, the integral of with respect to is .
Step 6
Apply the constant rule.
Step 7
Step 7.1
Let . Find .
Step 7.1.1
Differentiate .
Step 7.1.2
By the Sum Rule, the derivative of with respect to is .
Step 7.1.3
Differentiate using the Power Rule which states that is where .
Step 7.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 7.1.5
Add and .
Step 7.2
Substitute the lower limit in for in .
Step 7.3
Subtract from .
Step 7.4
Substitute the upper limit in for in .
Step 7.5
Simplify.
Step 7.5.1
To write as a fraction with a common denominator, multiply by .
Step 7.5.2
Combine and .
Step 7.5.3
Combine the numerators over the common denominator.
Step 7.5.4
Simplify the numerator.
Step 7.5.4.1
Multiply by .
Step 7.5.4.2
Subtract from .
Step 7.5.5
Move the negative in front of the fraction.
Step 7.6
The values found for and will be used to evaluate the definite integral.
Step 7.7
Rewrite the problem using , , and the new limits of integration.
Step 8
The integral of with respect to is .
Step 9
Step 9.1
Combine and .
Step 9.2
Combine and .
Step 9.3
Combine and .
Step 10
Step 10.1
Evaluate at and at .
Step 10.2
Evaluate at and at .
Step 10.3
Simplify.
Step 10.3.1
Rewrite as .
Step 10.3.2
Rewrite as .
Step 10.3.3
Apply the power rule and multiply exponents, .
Step 10.3.4
Multiply by .
Step 10.3.5
Rewrite as .
Step 10.3.6
Raise to the power of .
Step 10.3.7
Apply the power rule and multiply exponents, .
Step 10.3.8
Multiply by .
Step 10.3.9
Multiply the exponents in .
Step 10.3.9.1
Apply the power rule and multiply exponents, .
Step 10.3.9.2
Multiply by .
Step 10.3.10
Use the power rule to combine exponents.
Step 10.3.11
Subtract from .
Step 10.3.12
Rewrite the expression using the negative exponent rule .
Step 10.3.13
Raise to the power of .
Step 10.3.14
Multiply by by adding the exponents.
Step 10.3.14.1
Multiply by .
Step 10.3.14.1.1
Raise to the power of .
Step 10.3.14.1.2
Use the power rule to combine exponents.
Step 10.3.14.2
Add and .
Step 10.3.15
To write as a fraction with a common denominator, multiply by .
Step 10.3.16
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 10.3.16.1
Multiply by .
Step 10.3.16.2
Multiply by .
Step 10.3.17
Combine the numerators over the common denominator.
Step 10.3.18
Add and .
Step 10.3.19
Raising to any positive power yields .
Step 10.3.20
Multiply by .
Step 10.3.21
Raising to any positive power yields .
Step 10.3.22
Multiply by .
Step 10.3.23
Add and .
Step 10.3.24
Raising to any positive power yields .
Step 10.3.25
Multiply by .
Step 10.3.26
Add and .
Step 10.3.27
Add and .
Step 10.3.28
Multiply by .
Step 10.3.29
Add and .
Step 11
Use the quotient property of logarithms, .
Step 12
Step 12.1
Apply the product rule to .
Step 12.2
Combine.
Step 12.3
Multiply by .
Step 12.4
Raise to the power of .
Step 12.5
Multiply by .
Step 12.6
One to any power is one.
Step 12.7
is approximately which is negative so negate and remove the absolute value
Step 12.8
The absolute value is the distance between a number and zero. The distance between and is .
Step 12.9
Divide by .
Step 12.10
To write as a fraction with a common denominator, multiply by .
Step 12.11
To write as a fraction with a common denominator, multiply by .
Step 12.12
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 12.12.1
Multiply by .
Step 12.12.2
Multiply by .
Step 12.12.3
Multiply by .
Step 12.12.4
Multiply by .
Step 12.13
Combine the numerators over the common denominator.
Step 12.14
Simplify the numerator.
Step 12.14.1
Multiply by .
Step 12.14.2
Add and .
Step 13
Step 13.1
Simplify each term.
Step 13.1.1
Apply the product rule to .
Step 13.1.2
One to any power is one.
Step 13.1.3
Raise to the power of .
Step 13.2
To write as a fraction with a common denominator, multiply by .
Step 13.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 13.3.1
Multiply by .
Step 13.3.2
Multiply by .
Step 13.4
Combine the numerators over the common denominator.
Step 13.5
Add and .
Step 14
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Step 15