Calculus Examples

Evaluate the Limit limit as x approaches 2 from the right of ( square root of x^2-4)/(x-2)
Step 1
Apply L'Hospital's rule.
Tap for more steps...
Step 1.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.1.2.1
Evaluate the limit.
Tap for more steps...
Step 1.1.2.1.1
Move the limit under the radical sign.
Step 1.1.2.1.2
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.2.1.3
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.1.2.1.4
Evaluate the limit of which is constant as approaches .
Step 1.1.2.2
Evaluate the limit of by plugging in for .
Step 1.1.2.3
Simplify the answer.
Tap for more steps...
Step 1.1.2.3.1
Raise to the power of .
Step 1.1.2.3.2
Multiply by .
Step 1.1.2.3.3
Subtract from .
Step 1.1.2.3.4
Rewrite as .
Step 1.1.2.3.5
Pull terms out from under the radical, assuming positive real numbers.
Step 1.1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.1.3.1
Evaluate the limit.
Tap for more steps...
Step 1.1.3.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.3.1.2
Evaluate the limit of which is constant as approaches .
Step 1.1.3.2
Evaluate the limit of by plugging in for .
Step 1.1.3.3
Simplify the answer.
Tap for more steps...
Step 1.1.3.3.1
Multiply by .
Step 1.1.3.3.2
Subtract from .
Step 1.1.3.3.3
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 1.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 1.3.1
Differentiate the numerator and denominator.
Step 1.3.2
Use to rewrite as .
Step 1.3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.3.1
To apply the Chain Rule, set as .
Step 1.3.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3.3
Replace all occurrences of with .
Step 1.3.4
To write as a fraction with a common denominator, multiply by .
Step 1.3.5
Combine and .
Step 1.3.6
Combine the numerators over the common denominator.
Step 1.3.7
Simplify the numerator.
Tap for more steps...
Step 1.3.7.1
Multiply by .
Step 1.3.7.2
Subtract from .
Step 1.3.8
Move the negative in front of the fraction.
Step 1.3.9
Combine and .
Step 1.3.10
Move to the denominator using the negative exponent rule .
Step 1.3.11
By the Sum Rule, the derivative of with respect to is .
Step 1.3.12
Differentiate using the Power Rule which states that is where .
Step 1.3.13
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.14
Add and .
Step 1.3.15
Combine and .
Step 1.3.16
Combine and .
Step 1.3.17
Cancel the common factor.
Step 1.3.18
Rewrite the expression.
Step 1.3.19
By the Sum Rule, the derivative of with respect to is .
Step 1.3.20
Differentiate using the Power Rule which states that is where .
Step 1.3.21
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.22
Add and .
Step 1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.5
Rewrite as .
Step 1.6
Multiply by .
Step 2
Since the numerator is positive and the denominator approaches zero and is greater than zero for near to the right, the function increases without bound.