Enter a problem...
Calculus Examples
y=ln(ex+xex)y=ln(ex+xex)
Step 1
Let y=f(x)y=f(x), take the natural logarithm of both sides ln(y)=ln(f(x))ln(y)=ln(f(x)).
ln(y)=ln(ln(ex+xex))ln(y)=ln(ln(ex+xex))
Step 2
Step 2.1
Differentiate the left hand side ln(y)ln(y) using the chain rule.
y′y=ln(ln(ex+xex))
Step 2.2
Differentiate the right hand side.
Step 2.2.1
Differentiate ln(ln(ex+xex)).
y′y=ddx[ln(ln(ex+xex))]
Step 2.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ln(x) and g(x)=ln(ex+xex).
Step 2.2.2.1
To apply the Chain Rule, set u1 as ln(ex+xex).
y′y=ddu1[ln(u1)]ddx[ln(ex+xex)]
Step 2.2.2.2
The derivative of ln(u1) with respect to u1 is 1u1.
y′y=1u1ddx[ln(ex+xex)]
Step 2.2.2.3
Replace all occurrences of u1 with ln(ex+xex).
y′y=1ln(ex+xex)ddx[ln(ex+xex)]
y′y=1ln(ex+xex)ddx[ln(ex+xex)]
Step 2.2.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ln(x) and g(x)=ex+xex.
Step 2.2.3.1
To apply the Chain Rule, set u2 as ex+xex.
y′y=1ln(ex+xex)(ddu2[ln(u2)]ddx[ex+xex])
Step 2.2.3.2
The derivative of ln(u2) with respect to u2 is 1u2.
y′y=1ln(ex+xex)(1u2ddx[ex+xex])
Step 2.2.3.3
Replace all occurrences of u2 with ex+xex.
y′y=1ln(ex+xex)(1ex+xexddx[ex+xex])
y′y=1ln(ex+xex)(1ex+xexddx[ex+xex])
Step 2.2.4
Differentiate using the Sum Rule.
Step 2.2.4.1
Multiply 1ex+xex by 1ln(ex+xex).
y′y=1(ex+xex)ln(ex+xex)ddx[ex+xex]
Step 2.2.4.2
By the Sum Rule, the derivative of ex+xex with respect to x is ddx[ex]+ddx[xex].
y′y=1(ex+xex)ln(ex+xex)(ddx[ex]+ddx[xex])
y′y=1(ex+xex)ln(ex+xex)(ddx[ex]+ddx[xex])
Step 2.2.5
Differentiate using the Exponential Rule which states that ddx[ax] is axln(a) where a=e.
y′y=1(ex+xex)ln(ex+xex)(ex+ddx[xex])
Step 2.2.6
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=ex.
y′y=1(ex+xex)ln(ex+xex)(ex+xddx[ex]+exddx[x])
Step 2.2.7
Differentiate using the Exponential Rule which states that ddx[ax] is axln(a) where a=e.
y′y=1(ex+xex)ln(ex+xex)(ex+xex+exddx[x])
Step 2.2.8
Differentiate using the Power Rule.
Step 2.2.8.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
y′y=1(ex+xex)ln(ex+xex)(ex+xex+ex⋅1)
Step 2.2.8.2
Simplify by adding terms.
Step 2.2.8.2.1
Multiply ex by 1.
y′y=1(ex+xex)ln(ex+xex)(ex+xex+ex)
Step 2.2.8.2.2
Add ex and ex.
y′y=1(ex+xex)ln(ex+xex)(xex+2ex)
y′y=1(ex+xex)ln(ex+xex)(xex+2ex)
y′y=1(ex+xex)ln(ex+xex)(xex+2ex)
Step 2.2.9
Simplify.
Step 2.2.9.1
Reorder the factors of 1(ex+xex)ln(ex+xex)(xex+2ex).
y′y=(xex+2ex)1(ex+xex)ln(ex+xex)
Step 2.2.9.2
Factor ex out of ex+xex.
Step 2.2.9.2.1
Multiply by 1.
y′y=(xex+2ex)1(ex⋅1+xex)ln(ex+xex)
Step 2.2.9.2.2
Factor ex out of xex.
y′y=(xex+2ex)1(ex⋅1+exx)ln(ex+xex)
Step 2.2.9.2.3
Factor ex out of ex⋅1+exx.
y′y=(xex+2ex)1ex(1+x)ln(ex+xex)
y′y=(xex+2ex)1ex(1+x)ln(ex+xex)
Step 2.2.9.3
Multiply xex+2ex by 1ex(1+x)ln(ex+xex).
y′y=xex+2exex(1+x)ln(ex+xex)
Step 2.2.9.4
Factor ex out of xex+2ex.
Step 2.2.9.4.1
Factor ex out of xex.
y′y=exx+2exex(1+x)ln(ex+xex)
Step 2.2.9.4.2
Factor ex out of 2ex.
y′y=exx+ex⋅2ex(1+x)ln(ex+xex)
Step 2.2.9.4.3
Factor ex out of exx+ex⋅2.
y′y=ex(x+2)ex(1+x)ln(ex+xex)
y′y=ex(x+2)ex(1+x)ln(ex+xex)
Step 2.2.9.5
Cancel the common factor of ex.
Step 2.2.9.5.1
Cancel the common factor.
y′y=ex(x+2)ex(1+x)ln(ex+xex)
Step 2.2.9.5.2
Rewrite the expression.
y′y=x+2(1+x)ln(ex+xex)
y′y=x+2(1+x)ln(ex+xex)
Step 2.2.9.6
Reorder factors in x+2(1+x)ln(ex+xex).
y′y=x+2ln(ex+xex)(1+x)
y′y=x+2ln(ex+xex)(1+x)
y′y=x+2ln(ex+xex)(1+x)
y′y=x+2ln(ex+xex)(1+x)
Step 3
Isolate y′ and substitute the original function for y in the right hand side.
y′=x+2ln(ex+xex)(1+x)ln(ex+xex)
Step 4
Step 4.1
Cancel the common factor.
y′=x+2ln(ex+xex)(1+x)ln(ex+xex)
Step 4.2
Rewrite the expression.
y′=x+21+x
y′=x+21+x