Calculus Examples

Use Logarithmic Differentiation to Find the Derivative y=( square root of x)^x
y=(x)xy=(x)x
Step 1
Let y=f(x)y=f(x), take the natural logarithm of both sides ln(y)=ln(f(x))ln(y)=ln(f(x)).
ln(y)=ln((x)x)ln(y)=ln((x)x)
Step 2
Expand the right hand side.
Tap for more steps...
Step 2.1
Use nax=axnnax=axn to rewrite xx as x12x12.
ln(y)=ln((x12)x)ln(y)=ln((x12)x)
Step 2.2
Expand ln((x12)x)ln((x12)x) by moving xx outside the logarithm.
ln(y)=xln(x12)ln(y)=xln(x12)
Step 2.3
Expand ln(x12)ln(x12) by moving 1212 outside the logarithm.
ln(y)=x(12ln(x))ln(y)=x(12ln(x))
Step 2.4
Combine 1212 and xx.
ln(y)=x2ln(x)ln(y)=x2ln(x)
Step 2.5
Combine x2x2 and ln(x)ln(x).
ln(y)=xln(x)2ln(y)=xln(x)2
ln(y)=xln(x)2ln(y)=xln(x)2
Step 3
Differentiate the expression using the chain rule, keeping in mind that yy is a function of xx.
Tap for more steps...
Step 3.1
Differentiate the left hand side ln(y)ln(y) using the chain rule.
yy=xln(x)2y'y=xln(x)2
Step 3.2
Differentiate the right hand side.
Tap for more steps...
Step 3.2.1
Differentiate xln(x)2xln(x)2.
yy=ddx[xln(x)2]y'y=ddx[xln(x)2]
Step 3.2.2
Since 1212 is constant with respect to xx, the derivative of xln(x)2xln(x)2 with respect to xx is 12ddx[xln(x)]12ddx[xln(x)].
yy=12ddx[xln(x)]y'y=12ddx[xln(x)]
Step 3.2.3
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=xf(x)=x and g(x)=ln(x)g(x)=ln(x).
yy=12(xddx[ln(x)]+ln(x)ddx[x])y'y=12(xddx[ln(x)]+ln(x)ddx[x])
Step 3.2.4
The derivative of ln(x)ln(x) with respect to xx is 1x1x.
yy=12(x1x+ln(x)ddx[x])y'y=12(x1x+ln(x)ddx[x])
Step 3.2.5
Differentiate using the Power Rule.
Tap for more steps...
Step 3.2.5.1
Combine xx and 1x1x.
yy=12(xx+ln(x)ddx[x])y'y=12(xx+ln(x)ddx[x])
Step 3.2.5.2
Cancel the common factor of xx.
Tap for more steps...
Step 3.2.5.2.1
Cancel the common factor.
yy=12(xx+ln(x)ddx[x])
Step 3.2.5.2.2
Rewrite the expression.
yy=12(1+ln(x)ddx[x])
yy=12(1+ln(x)ddx[x])
Step 3.2.5.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
yy=12(1+ln(x)1)
Step 3.2.5.4
Multiply ln(x) by 1.
yy=12(1+ln(x))
yy=12(1+ln(x))
Step 3.2.6
Simplify.
Tap for more steps...
Step 3.2.6.1
Apply the distributive property.
yy=121+12ln(x)
Step 3.2.6.2
Multiply 12 by 1.
yy=12+12ln(x)
Step 3.2.6.3
Reorder terms.
yy=12ln(x)+12
Step 3.2.6.4
Combine 12 and ln(x).
yy=ln(x)2+12
yy=ln(x)2+12
yy=ln(x)2+12
yy=ln(x)2+12
Step 4
Isolate y and substitute the original function for y in the right hand side.
y=(ln(x)2+12)(x)x
Step 5
Simplify the right hand side.
Tap for more steps...
Step 5.1
Simplify each term.
Tap for more steps...
Step 5.1.1
Rewrite ln(x)2 as 12ln(x).
y=(12ln(x)+12)(x)x
Step 5.1.2
Simplify 12ln(x) by moving 12 inside the logarithm.
y=(ln(x12)+12)(x)x
y=(ln(x12)+12)(x)x
Step 5.2
Apply the distributive property.
y=ln(x12)xx+12xx
Step 5.3
Combine 12 and xx.
y=ln(x12)xx+xx2
Step 5.4
Reorder factors in ln(x12)xx+xx2.
y=xxln(x12)+xx2
y=xxln(x12)+xx2
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]