Basic Math Examples

Simplify ((a^(2-9))/(8a+24))÷((3-a)/8)
a2-98a+24÷3-a8
Step 1
To divide by a fraction, multiply by its reciprocal.
a2-98a+2483-a
Step 2
Move a2-9 to the denominator using the negative exponent rule b-n=1bn.
1(8a+24)a-(2-9)83-a
Step 3
Simplify the denominator.
Tap for more steps...
Step 3.1
Factor 8 out of 8a+24.
Tap for more steps...
Step 3.1.1
Factor 8 out of 8a.
1(8(a)+24)a-(2-9)83-a
Step 3.1.2
Factor 8 out of 24.
1(8a+83)a-(2-9)83-a
Step 3.1.3
Factor 8 out of 8a+83.
18(a+3)a-(2-9)83-a
18(a+3)a-(2-9)83-a
Step 3.2
Subtract 9 from 2.
18(a+3)a--783-a
Step 3.3
Multiply -1 by -7.
18(a+3)a783-a
18(a+3)a783-a
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Cancel the common factor of 8.
Tap for more steps...
Step 4.1.1
Factor 8 out of 8(a+3)a7.
18((a+3)a7)83-a
Step 4.1.2
Cancel the common factor.
18((a+3)a7)83-a
Step 4.1.3
Rewrite the expression.
1(a+3)a713-a
1(a+3)a713-a
Step 4.2
Multiply 1(a+3)a7 by 13-a.
1(a+3)a7(3-a)
Step 4.3
Reorder factors in 1(a+3)a7(3-a).
1a7(a+3)(3-a)
1a7(a+3)(3-a)
 [x2  12  π  xdx ]