Basic Math Examples

Simplify (a^2+7)/(a^2-25)*(a^3-3a^2+7a-21)/(a^2+2a-15)
a2+7a2-25a3-3a2+7a-21a2+2a-15a2+7a225a33a2+7a21a2+2a15
Step 1
Simplify the denominator.
Tap for more steps...
Step 1.1
Rewrite 2525 as 5252.
a2+7a2-52a3-3a2+7a-21a2+2a-15a2+7a252a33a2+7a21a2+2a15
Step 1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=aa=a and b=5b=5.
a2+7(a+5)(a-5)a3-3a2+7a-21a2+2a-15a2+7(a+5)(a5)a33a2+7a21a2+2a15
a2+7(a+5)(a-5)a3-3a2+7a-21a2+2a-15a2+7(a+5)(a5)a33a2+7a21a2+2a15
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Factor out the greatest common factor from each group.
Tap for more steps...
Step 2.1.1
Group the first two terms and the last two terms.
a2+7(a+5)(a-5)(a3-3a2)+7a-21a2+2a-15a2+7(a+5)(a5)(a33a2)+7a21a2+2a15
Step 2.1.2
Factor out the greatest common factor (GCF) from each group.
a2+7(a+5)(a-5)a2(a-3)+7(a-3)a2+2a-15a2+7(a+5)(a5)a2(a3)+7(a3)a2+2a15
a2+7(a+5)(a-5)a2(a-3)+7(a-3)a2+2a-15a2+7(a+5)(a5)a2(a3)+7(a3)a2+2a15
Step 2.2
Factor the polynomial by factoring out the greatest common factor, a-3a3.
a2+7(a+5)(a-5)(a-3)(a2+7)a2+2a-15a2+7(a+5)(a5)(a3)(a2+7)a2+2a15
a2+7(a+5)(a-5)(a-3)(a2+7)a2+2a-15a2+7(a+5)(a5)(a3)(a2+7)a2+2a15
Step 3
Factor a2+2a-15 using the AC method.
Tap for more steps...
Step 3.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -15 and whose sum is 2.
-3,5
Step 3.2
Write the factored form using these integers.
a2+7(a+5)(a-5)(a-3)(a2+7)(a-3)(a+5)
a2+7(a+5)(a-5)(a-3)(a2+7)(a-3)(a+5)
Step 4
Cancel the common factor of a-3.
Tap for more steps...
Step 4.1
Cancel the common factor.
a2+7(a+5)(a-5)(a-3)(a2+7)(a-3)(a+5)
Step 4.2
Rewrite the expression.
a2+7(a+5)(a-5)a2+7a+5
a2+7(a+5)(a-5)a2+7a+5
Step 5
Multiply a2+7(a+5)(a-5)a2+7a+5.
Tap for more steps...
Step 5.1
Multiply a2+7(a+5)(a-5) by a2+7a+5.
(a2+7)(a2+7)(a+5)(a-5)(a+5)
Step 5.2
Raise a2+7 to the power of 1.
(a2+7)1(a2+7)(a+5)(a-5)(a+5)
Step 5.3
Raise a2+7 to the power of 1.
(a2+7)1(a2+7)1(a+5)(a-5)(a+5)
Step 5.4
Use the power rule aman=am+n to combine exponents.
(a2+7)1+1(a+5)(a-5)(a+5)
Step 5.5
Add 1 and 1.
(a2+7)2(a+5)(a-5)(a+5)
Step 5.6
Raise a+5 to the power of 1.
(a2+7)2(a+5)1(a+5)(a-5)
Step 5.7
Raise a+5 to the power of 1.
(a2+7)2(a+5)1(a+5)1(a-5)
Step 5.8
Use the power rule aman=am+n to combine exponents.
(a2+7)2(a+5)1+1(a-5)
Step 5.9
Add 1 and 1.
(a2+7)2(a+5)2(a-5)
(a2+7)2(a+5)2(a-5)
 [x2  12  π  xdx ]