Basic Math Examples

Simplify (u-v)^3
(u-v)3(uv)3
Step 1
Use the Binomial Theorem.
u3+3u2(-v)+3u(-v)2+(-v)3u3+3u2(v)+3u(v)2+(v)3
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Rewrite using the commutative property of multiplication.
u3+3-1u2v+3u(-v)2+(-v)3u3+31u2v+3u(v)2+(v)3
Step 2.2
Multiply 33 by -11.
u3-3u2v+3u(-v)2+(-v)3u33u2v+3u(v)2+(v)3
Step 2.3
Apply the product rule to -vv.
u3-3u2v+3u((-1)2v2)+(-v)3u33u2v+3u((1)2v2)+(v)3
Step 2.4
Rewrite using the commutative property of multiplication.
u3-3u2v+3(-1)2uv2+(-v)3u33u2v+3(1)2uv2+(v)3
Step 2.5
Raise -11 to the power of 22.
u3-3u2v+31uv2+(-v)3u33u2v+31uv2+(v)3
Step 2.6
Multiply 33 by 11.
u3-3u2v+3uv2+(-v)3u33u2v+3uv2+(v)3
Step 2.7
Apply the product rule to -vv.
u3-3u2v+3uv2+(-1)3v3u33u2v+3uv2+(1)3v3
Step 2.8
Raise -11 to the power of 33.
u3-3u2v+3uv2-v3u33u2v+3uv2v3
u3-3u2v+3uv2-v3u33u2v+3uv2v3
 [x2  12  π  xdx ]  x2  12  π  xdx