Basic Math Examples

Simplify (sin(y)+cos(y))^2-1
(sin(y)+cos(y))2-1
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite (sin(y)+cos(y))2 as (sin(y)+cos(y))(sin(y)+cos(y)).
(sin(y)+cos(y))(sin(y)+cos(y))-1
Step 1.2
Expand (sin(y)+cos(y))(sin(y)+cos(y)) using the FOIL Method.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
sin(y)(sin(y)+cos(y))+cos(y)(sin(y)+cos(y))-1
Step 1.2.2
Apply the distributive property.
sin(y)sin(y)+sin(y)cos(y)+cos(y)(sin(y)+cos(y))-1
Step 1.2.3
Apply the distributive property.
sin(y)sin(y)+sin(y)cos(y)+cos(y)sin(y)+cos(y)cos(y)-1
sin(y)sin(y)+sin(y)cos(y)+cos(y)sin(y)+cos(y)cos(y)-1
Step 1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Multiply sin(y)sin(y).
Tap for more steps...
Step 1.3.1.1.1
Raise sin(y) to the power of 1.
sin1(y)sin(y)+sin(y)cos(y)+cos(y)sin(y)+cos(y)cos(y)-1
Step 1.3.1.1.2
Raise sin(y) to the power of 1.
sin1(y)sin1(y)+sin(y)cos(y)+cos(y)sin(y)+cos(y)cos(y)-1
Step 1.3.1.1.3
Use the power rule aman=am+n to combine exponents.
sin(y)1+1+sin(y)cos(y)+cos(y)sin(y)+cos(y)cos(y)-1
Step 1.3.1.1.4
Add 1 and 1.
sin2(y)+sin(y)cos(y)+cos(y)sin(y)+cos(y)cos(y)-1
sin2(y)+sin(y)cos(y)+cos(y)sin(y)+cos(y)cos(y)-1
Step 1.3.1.2
Multiply cos(y)cos(y).
Tap for more steps...
Step 1.3.1.2.1
Raise cos(y) to the power of 1.
sin2(y)+sin(y)cos(y)+cos(y)sin(y)+cos1(y)cos(y)-1
Step 1.3.1.2.2
Raise cos(y) to the power of 1.
sin2(y)+sin(y)cos(y)+cos(y)sin(y)+cos1(y)cos1(y)-1
Step 1.3.1.2.3
Use the power rule aman=am+n to combine exponents.
sin2(y)+sin(y)cos(y)+cos(y)sin(y)+cos(y)1+1-1
Step 1.3.1.2.4
Add 1 and 1.
sin2(y)+sin(y)cos(y)+cos(y)sin(y)+cos2(y)-1
sin2(y)+sin(y)cos(y)+cos(y)sin(y)+cos2(y)-1
sin2(y)+sin(y)cos(y)+cos(y)sin(y)+cos2(y)-1
Step 1.3.2
Reorder the factors of sin(y)cos(y).
sin2(y)+cos(y)sin(y)+cos(y)sin(y)+cos2(y)-1
Step 1.3.3
Add cos(y)sin(y) and cos(y)sin(y).
sin2(y)+2cos(y)sin(y)+cos2(y)-1
sin2(y)+2cos(y)sin(y)+cos2(y)-1
Step 1.4
Move cos2(y).
sin2(y)+cos2(y)+2cos(y)sin(y)-1
Step 1.5
Apply pythagorean identity.
1+2cos(y)sin(y)-1
Step 1.6
Simplify each term.
Tap for more steps...
Step 1.6.1
Reorder 2cos(y) and sin(y).
1+sin(y)(2cos(y))-1
Step 1.6.2
Reorder sin(y) and 2.
1+2sin(y)cos(y)-1
Step 1.6.3
Apply the sine double-angle identity.
1+sin(2y)-1
1+sin(2y)-1
1+sin(2y)-1
Step 2
Combine the opposite terms in 1+sin(2y)-1.
Tap for more steps...
Step 2.1
Subtract 1 from 1.
0+sin(2y)
Step 2.2
Add 0 and sin(2y).
sin(2y)
sin(2y)
(sin(y)+cos(y))2-1
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]