Enter a problem...
Basic Math Examples
h=l=w=h=l=w=
Step 1
The surface area of a pyramid is equal to the sum of the areas of each side of the pyramid. The base of the pyramid has area lw, and sl and sw represent the slant height on the length and slant height on the width.
(length)⋅(width)+(width)⋅sl+(length)⋅sw
Step 2
Substitute the values of the length l, the width w, and the height h into the formula for surface area of a pyramid.
l⋅w+w⋅√(l2)2+(h)2+l⋅√(w2)2+(h)2
Step 3
Step 3.1
Apply the product rule to l2.
lw+w⋅√l222+(h)2+l⋅√(w2)2+(h)2
Step 3.2
Raise 2 to the power of 2.
lw+w⋅√l24+(h)2+l⋅√(w2)2+(h)2
Step 3.3
To write h2 as a fraction with a common denominator, multiply by 44.
lw+w⋅√l24+h2⋅44+l⋅√(w2)2+(h)2
Step 3.4
Combine h2 and 44.
lw+w⋅√l24+h2⋅44+l⋅√(w2)2+(h)2
Step 3.5
Combine the numerators over the common denominator.
lw+w⋅√l2+h2⋅44+l⋅√(w2)2+(h)2
Step 3.6
Move 4 to the left of h2.
lw+w⋅√l2+4h24+l⋅√(w2)2+(h)2
Step 3.7
Rewrite l2+4h24 as (12)2(l2+4h2).
Step 3.7.1
Factor the perfect power 12 out of l2+4h2.
lw+w⋅√12(l2+4h2)4+l⋅√(w2)2+(h)2
Step 3.7.2
Factor the perfect power 22 out of 4.
lw+w⋅√12(l2+4h2)22⋅1+l⋅√(w2)2+(h)2
Step 3.7.3
Rearrange the fraction 12(l2+4h2)22⋅1.
lw+w⋅√(12)2(l2+4h2)+l⋅√(w2)2+(h)2
lw+w⋅√(12)2(l2+4h2)+l⋅√(w2)2+(h)2
Step 3.8
Pull terms out from under the radical.
lw+w⋅(12√l2+4h2)+l⋅√(w2)2+(h)2
Step 3.9
Rewrite using the commutative property of multiplication.
lw+12w√l2+4h2+l⋅√(w2)2+(h)2
Step 3.10
Combine 12 and w.
lw+w2√l2+4h2+l⋅√(w2)2+(h)2
Step 3.11
Combine w2 and √l2+4h2.
lw+w√l2+4h22+l⋅√(w2)2+(h)2
Step 3.12
Apply the product rule to w2.
lw+w√l2+4h22+l⋅√w222+(h)2
Step 3.13
Raise 2 to the power of 2.
lw+w√l2+4h22+l⋅√w24+(h)2
Step 3.14
To write h2 as a fraction with a common denominator, multiply by 44.
lw+w√l2+4h22+l⋅√w24+h2⋅44
Step 3.15
Combine h2 and 44.
lw+w√l2+4h22+l⋅√w24+h2⋅44
Step 3.16
Combine the numerators over the common denominator.
lw+w√l2+4h22+l⋅√w2+h2⋅44
Step 3.17
Move 4 to the left of h2.
lw+w√l2+4h22+l⋅√w2+4h24
Step 3.18
Rewrite w2+4h24 as (12)2(w2+4h2).
Step 3.18.1
Factor the perfect power 12 out of w2+4h2.
lw+w√l2+4h22+l⋅√12(w2+4h2)4
Step 3.18.2
Factor the perfect power 22 out of 4.
lw+w√l2+4h22+l⋅√12(w2+4h2)22⋅1
Step 3.18.3
Rearrange the fraction 12(w2+4h2)22⋅1.
lw+w√l2+4h22+l⋅√(12)2(w2+4h2)
lw+w√l2+4h22+l⋅√(12)2(w2+4h2)
Step 3.19
Pull terms out from under the radical.
lw+w√l2+4h22+l⋅(12√w2+4h2)
Step 3.20
Rewrite using the commutative property of multiplication.
lw+w√l2+4h22+12l√w2+4h2
Step 3.21
Combine 12 and l.
lw+w√l2+4h22+l2√w2+4h2
Step 3.22
Combine l2 and √w2+4h2.
lw+w√l2+4h22+l√w2+4h22
lw+w√l2+4h22+l√w2+4h22
Step 4
To write lw as a fraction with a common denominator, multiply by 22.
lw⋅22+w√l2+4h22+l√w2+4h22
Step 5
Combine lw and 22.
lw⋅22+w√l2+4h22+l√w2+4h22
Step 6
Combine the numerators over the common denominator.
lw⋅2+w√l2+4h22+l√w2+4h22
Step 7
Combine the numerators over the common denominator.
lw⋅2+w√l2+4h2+l√w2+4h22
Step 8
Reorder factors in lw⋅2+w√l2+4h2+l√w2+4h2.
2lw+w√l2+4h2+l√w2+4h22