Basic Math Examples

Simplify (64c^3)/(16c^2+4cn+n^2)-(n^3)/(16c^2+4cn+n^2)
64c316c2+4cn+n2-n316c2+4cn+n264c316c2+4cn+n2n316c2+4cn+n2
Step 1
Combine the numerators over the common denominator.
64c3-n316c2+4cn+n264c3n316c2+4cn+n2
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Rewrite 64c364c3 as (4c)3(4c)3.
(4c)3-n316c2+4cn+n2(4c)3n316c2+4cn+n2
Step 2.2
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3b3=(ab)(a2+ab+b2) where a=4ca=4c and b=nb=n.
(4c-n)((4c)2+4cn+n2)16c2+4cn+n2(4cn)((4c)2+4cn+n2)16c2+4cn+n2
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Apply the product rule to 4c4c.
(4c-n)(42c2+4cn+n2)16c2+4cn+n2(4cn)(42c2+4cn+n2)16c2+4cn+n2
Step 2.3.2
Raise 44 to the power of 22.
(4c-n)(16c2+4cn+n2)16c2+4cn+n2(4cn)(16c2+4cn+n2)16c2+4cn+n2
(4c-n)(16c2+4cn+n2)16c2+4cn+n2(4cn)(16c2+4cn+n2)16c2+4cn+n2
(4c-n)(16c2+4cn+n2)16c2+4cn+n2(4cn)(16c2+4cn+n2)16c2+4cn+n2
Step 3
Cancel the common factor of 16c2+4cn+n216c2+4cn+n2.
Tap for more steps...
Step 3.1
Cancel the common factor.
(4c-n)(16c2+4cn+n2)16c2+4cn+n2
Step 3.2
Divide 4c-n by 1.
4c-n
4c-n
 [x2  12  π  xdx ]