Basic Math Examples

Simplify (8a^3b^-5c^-2)^2
(8a3b-5c-2)2
Step 1
Rewrite the expression using the negative exponent rule b-n=1bn.
(8a31b5c-2)2
Step 2
Multiply 8a31b5.
Tap for more steps...
Step 2.1
Combine 8 and 1b5.
(a38b5c-2)2
Step 2.2
Combine a3 and 8b5.
(a38b5c-2)2
(a38b5c-2)2
Step 3
Move 8 to the left of a3.
(8a3b5c-2)2
Step 4
Rewrite the expression using the negative exponent rule b-n=1bn.
(8a3b51c2)2
Step 5
Combine.
(8a31b5c2)2
Step 6
Multiply 8 by 1.
(8a3b5c2)2
Step 7
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 7.1
Apply the product rule to 8a3b5c2.
(8a3)2(b5c2)2
Step 7.2
Apply the product rule to 8a3.
82(a3)2(b5c2)2
Step 7.3
Apply the product rule to b5c2.
82(a3)2(b5)2(c2)2
82(a3)2(b5)2(c2)2
Step 8
Simplify the numerator.
Tap for more steps...
Step 8.1
Raise 8 to the power of 2.
64(a3)2(b5)2(c2)2
Step 8.2
Multiply the exponents in (a3)2.
Tap for more steps...
Step 8.2.1
Apply the power rule and multiply exponents, (am)n=amn.
64a32(b5)2(c2)2
Step 8.2.2
Multiply 3 by 2.
64a6(b5)2(c2)2
64a6(b5)2(c2)2
64a6(b5)2(c2)2
Step 9
Simplify the denominator.
Tap for more steps...
Step 9.1
Multiply the exponents in (b5)2.
Tap for more steps...
Step 9.1.1
Apply the power rule and multiply exponents, (am)n=amn.
64a6b52(c2)2
Step 9.1.2
Multiply 5 by 2.
64a6b10(c2)2
64a6b10(c2)2
Step 9.2
Multiply the exponents in (c2)2.
Tap for more steps...
Step 9.2.1
Apply the power rule and multiply exponents, (am)n=amn.
64a6b10c22
Step 9.2.2
Multiply 2 by 2.
64a6b10c4
64a6b10c4
64a6b10c4
 [x2  12  π  xdx ]