Basic Math Examples

Simplify (a-2)^2(a+2)^2
(a-2)2(a+2)2(a2)2(a+2)2
Step 1
Rewrite (a-2)2(a2)2 as (a-2)(a-2)(a2)(a2).
(a-2)(a-2)(a+2)2(a2)(a2)(a+2)2
Step 2
Expand (a-2)(a-2)(a2)(a2) using the FOIL Method.
Tap for more steps...
Step 2.1
Apply the distributive property.
(a(a-2)-2(a-2))(a+2)2(a(a2)2(a2))(a+2)2
Step 2.2
Apply the distributive property.
(aa+a-2-2(a-2))(a+2)2(aa+a22(a2))(a+2)2
Step 2.3
Apply the distributive property.
(aa+a-2-2a-2-2)(a+2)2(aa+a22a22)(a+2)2
(aa+a-2-2a-2-2)(a+2)2(aa+a22a22)(a+2)2
Step 3
Simplify and combine like terms.
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
Multiply aa by aa.
(a2+a-2-2a-2-2)(a+2)2(a2+a22a22)(a+2)2
Step 3.1.2
Move -22 to the left of aa.
(a2-2a-2a-2-2)(a+2)2(a22a2a22)(a+2)2
Step 3.1.3
Multiply -22 by -22.
(a2-2a-2a+4)(a+2)2(a22a2a+4)(a+2)2
(a2-2a-2a+4)(a+2)2(a22a2a+4)(a+2)2
Step 3.2
Subtract 2a2a from -2a2a.
(a2-4a+4)(a+2)2(a24a+4)(a+2)2
(a2-4a+4)(a+2)2(a24a+4)(a+2)2
Step 4
Rewrite (a+2)2(a+2)2 as (a+2)(a+2)(a+2)(a+2).
(a2-4a+4)((a+2)(a+2))(a24a+4)((a+2)(a+2))
Step 5
Expand (a+2)(a+2)(a+2)(a+2) using the FOIL Method.
Tap for more steps...
Step 5.1
Apply the distributive property.
(a2-4a+4)(a(a+2)+2(a+2))(a24a+4)(a(a+2)+2(a+2))
Step 5.2
Apply the distributive property.
(a2-4a+4)(aa+a2+2(a+2))(a24a+4)(aa+a2+2(a+2))
Step 5.3
Apply the distributive property.
(a2-4a+4)(aa+a2+2a+22)(a24a+4)(aa+a2+2a+22)
(a2-4a+4)(aa+a2+2a+22)(a24a+4)(aa+a2+2a+22)
Step 6
Simplify and combine like terms.
Tap for more steps...
Step 6.1
Simplify each term.
Tap for more steps...
Step 6.1.1
Multiply aa by aa.
(a2-4a+4)(a2+a2+2a+22)(a24a+4)(a2+a2+2a+22)
Step 6.1.2
Move 22 to the left of aa.
(a2-4a+4)(a2+2a+2a+22)(a24a+4)(a2+2a+2a+22)
Step 6.1.3
Multiply 22 by 22.
(a2-4a+4)(a2+2a+2a+4)(a24a+4)(a2+2a+2a+4)
(a2-4a+4)(a2+2a+2a+4)(a24a+4)(a2+2a+2a+4)
Step 6.2
Add 2a2a and 2a2a.
(a2-4a+4)(a2+4a+4)(a24a+4)(a2+4a+4)
(a2-4a+4)(a2+4a+4)(a24a+4)(a2+4a+4)
Step 7
Expand (a2-4a+4)(a2+4a+4)(a24a+4)(a2+4a+4) by multiplying each term in the first expression by each term in the second expression.
a2a2+a2(4a)+a24-4aa2-4a(4a)-4a4+4a2+4(4a)+44a2a2+a2(4a)+a244aa24a(4a)4a4+4a2+4(4a)+44
Step 8
Simplify terms.
Tap for more steps...
Step 8.1
Combine the opposite terms in a2a2+a2(4a)+a24-4aa2-4a(4a)-4a4+4a2+4(4a)+44a2a2+a2(4a)+a244aa24a(4a)4a4+4a2+4(4a)+44.
Tap for more steps...
Step 8.1.1
Reorder the factors in the terms a2(4a)a2(4a) and -4aa24aa2.
a2a2+4a2a+a24-4a2a-4a(4a)-4a4+4a2+4(4a)+44a2a2+4a2a+a244a2a4a(4a)4a4+4a2+4(4a)+44
Step 8.1.2
Subtract 4a2a4a2a from 4a2a4a2a.
a2a2+a24+0-4a(4a)-4a4+4a2+4(4a)+44a2a2+a24+04a(4a)4a4+4a2+4(4a)+44
Step 8.1.3
Add a2a2+a24a2a2+a24 and 00.
a2a2+a24-4a(4a)-4a4+4a2+4(4a)+44a2a2+a244a(4a)4a4+4a2+4(4a)+44
Step 8.1.4
Reorder the factors in the terms -4a44a4 and 4(4a)4(4a).
a2a2+a24-4a(4a)-44a+4a2+44a+44a2a2+a244a(4a)44a+4a2+44a+44
Step 8.1.5
Add -44a44a and 44a44a.
a2a2+a24-4a(4a)+4a2+0+44a2a2+a244a(4a)+4a2+0+44
Step 8.1.6
Add a2a2+a24-4a(4a)+4a2a2a2+a244a(4a)+4a2 and 00.
a2a2+a24-4a(4a)+4a2+44a2a2+a244a(4a)+4a2+44
a2a2+a24-4a(4a)+4a2+44
Step 8.2
Simplify each term.
Tap for more steps...
Step 8.2.1
Multiply a2 by a2 by adding the exponents.
Tap for more steps...
Step 8.2.1.1
Use the power rule aman=am+n to combine exponents.
a2+2+a24-4a(4a)+4a2+44
Step 8.2.1.2
Add 2 and 2.
a4+a24-4a(4a)+4a2+44
a4+a24-4a(4a)+4a2+44
Step 8.2.2
Move 4 to the left of a2.
a4+4a2-4a(4a)+4a2+44
Step 8.2.3
Rewrite using the commutative property of multiplication.
a4+4a2-44aa+4a2+44
Step 8.2.4
Multiply a by a by adding the exponents.
Tap for more steps...
Step 8.2.4.1
Move a.
a4+4a2-44(aa)+4a2+44
Step 8.2.4.2
Multiply a by a.
a4+4a2-44a2+4a2+44
a4+4a2-44a2+4a2+44
Step 8.2.5
Multiply -4 by 4.
a4+4a2-16a2+4a2+44
Step 8.2.6
Multiply 4 by 4.
a4+4a2-16a2+4a2+16
a4+4a2-16a2+4a2+16
Step 8.3
Simplify by adding terms.
Tap for more steps...
Step 8.3.1
Subtract 16a2 from 4a2.
a4-12a2+4a2+16
Step 8.3.2
Add -12a2 and 4a2.
a4-8a2+16
a4-8a2+16
a4-8a2+16
 [x2  12  π  xdx ]