Enter a problem...
Basic Math Examples
(a-2)2(a+2)2(a−2)2(a+2)2
Step 1
Rewrite (a-2)2(a−2)2 as (a-2)(a-2)(a−2)(a−2).
(a-2)(a-2)(a+2)2(a−2)(a−2)(a+2)2
Step 2
Step 2.1
Apply the distributive property.
(a(a-2)-2(a-2))(a+2)2(a(a−2)−2(a−2))(a+2)2
Step 2.2
Apply the distributive property.
(a⋅a+a⋅-2-2(a-2))(a+2)2(a⋅a+a⋅−2−2(a−2))(a+2)2
Step 2.3
Apply the distributive property.
(a⋅a+a⋅-2-2a-2⋅-2)(a+2)2(a⋅a+a⋅−2−2a−2⋅−2)(a+2)2
(a⋅a+a⋅-2-2a-2⋅-2)(a+2)2(a⋅a+a⋅−2−2a−2⋅−2)(a+2)2
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Multiply aa by aa.
(a2+a⋅-2-2a-2⋅-2)(a+2)2(a2+a⋅−2−2a−2⋅−2)(a+2)2
Step 3.1.2
Move -2−2 to the left of aa.
(a2-2⋅a-2a-2⋅-2)(a+2)2(a2−2⋅a−2a−2⋅−2)(a+2)2
Step 3.1.3
Multiply -2−2 by -2−2.
(a2-2a-2a+4)(a+2)2(a2−2a−2a+4)(a+2)2
(a2-2a-2a+4)(a+2)2(a2−2a−2a+4)(a+2)2
Step 3.2
Subtract 2a2a from -2a−2a.
(a2-4a+4)(a+2)2(a2−4a+4)(a+2)2
(a2-4a+4)(a+2)2(a2−4a+4)(a+2)2
Step 4
Rewrite (a+2)2(a+2)2 as (a+2)(a+2)(a+2)(a+2).
(a2-4a+4)((a+2)(a+2))(a2−4a+4)((a+2)(a+2))
Step 5
Step 5.1
Apply the distributive property.
(a2-4a+4)(a(a+2)+2(a+2))(a2−4a+4)(a(a+2)+2(a+2))
Step 5.2
Apply the distributive property.
(a2-4a+4)(a⋅a+a⋅2+2(a+2))(a2−4a+4)(a⋅a+a⋅2+2(a+2))
Step 5.3
Apply the distributive property.
(a2-4a+4)(a⋅a+a⋅2+2a+2⋅2)(a2−4a+4)(a⋅a+a⋅2+2a+2⋅2)
(a2-4a+4)(a⋅a+a⋅2+2a+2⋅2)(a2−4a+4)(a⋅a+a⋅2+2a+2⋅2)
Step 6
Step 6.1
Simplify each term.
Step 6.1.1
Multiply aa by aa.
(a2-4a+4)(a2+a⋅2+2a+2⋅2)(a2−4a+4)(a2+a⋅2+2a+2⋅2)
Step 6.1.2
Move 22 to the left of aa.
(a2-4a+4)(a2+2⋅a+2a+2⋅2)(a2−4a+4)(a2+2⋅a+2a+2⋅2)
Step 6.1.3
Multiply 22 by 22.
(a2-4a+4)(a2+2a+2a+4)(a2−4a+4)(a2+2a+2a+4)
(a2-4a+4)(a2+2a+2a+4)(a2−4a+4)(a2+2a+2a+4)
Step 6.2
Add 2a2a and 2a2a.
(a2-4a+4)(a2+4a+4)(a2−4a+4)(a2+4a+4)
(a2-4a+4)(a2+4a+4)(a2−4a+4)(a2+4a+4)
Step 7
Expand (a2-4a+4)(a2+4a+4)(a2−4a+4)(a2+4a+4) by multiplying each term in the first expression by each term in the second expression.
a2a2+a2(4a)+a2⋅4-4a⋅a2-4a(4a)-4a⋅4+4a2+4(4a)+4⋅4a2a2+a2(4a)+a2⋅4−4a⋅a2−4a(4a)−4a⋅4+4a2+4(4a)+4⋅4
Step 8
Step 8.1
Combine the opposite terms in a2a2+a2(4a)+a2⋅4-4a⋅a2-4a(4a)-4a⋅4+4a2+4(4a)+4⋅4a2a2+a2(4a)+a2⋅4−4a⋅a2−4a(4a)−4a⋅4+4a2+4(4a)+4⋅4.
Step 8.1.1
Reorder the factors in the terms a2(4a)a2(4a) and -4a⋅a2−4a⋅a2.
a2a2+4a2a+a2⋅4-4a2a-4a(4a)-4a⋅4+4a2+4(4a)+4⋅4a2a2+4a2a+a2⋅4−4a2a−4a(4a)−4a⋅4+4a2+4(4a)+4⋅4
Step 8.1.2
Subtract 4a2a4a2a from 4a2a4a2a.
a2a2+a2⋅4+0-4a(4a)-4a⋅4+4a2+4(4a)+4⋅4a2a2+a2⋅4+0−4a(4a)−4a⋅4+4a2+4(4a)+4⋅4
Step 8.1.3
Add a2a2+a2⋅4a2a2+a2⋅4 and 00.
a2a2+a2⋅4-4a(4a)-4a⋅4+4a2+4(4a)+4⋅4a2a2+a2⋅4−4a(4a)−4a⋅4+4a2+4(4a)+4⋅4
Step 8.1.4
Reorder the factors in the terms -4a⋅4−4a⋅4 and 4(4a)4(4a).
a2a2+a2⋅4-4a(4a)-4⋅4a+4a2+4⋅4a+4⋅4a2a2+a2⋅4−4a(4a)−4⋅4a+4a2+4⋅4a+4⋅4
Step 8.1.5
Add -4⋅4a−4⋅4a and 4⋅4a4⋅4a.
a2a2+a2⋅4-4a(4a)+4a2+0+4⋅4a2a2+a2⋅4−4a(4a)+4a2+0+4⋅4
Step 8.1.6
Add a2a2+a2⋅4-4a(4a)+4a2a2a2+a2⋅4−4a(4a)+4a2 and 00.
a2a2+a2⋅4-4a(4a)+4a2+4⋅4a2a2+a2⋅4−4a(4a)+4a2+4⋅4
a2a2+a2⋅4-4a(4a)+4a2+4⋅4
Step 8.2
Simplify each term.
Step 8.2.1
Multiply a2 by a2 by adding the exponents.
Step 8.2.1.1
Use the power rule aman=am+n to combine exponents.
a2+2+a2⋅4-4a(4a)+4a2+4⋅4
Step 8.2.1.2
Add 2 and 2.
a4+a2⋅4-4a(4a)+4a2+4⋅4
a4+a2⋅4-4a(4a)+4a2+4⋅4
Step 8.2.2
Move 4 to the left of a2.
a4+4⋅a2-4a(4a)+4a2+4⋅4
Step 8.2.3
Rewrite using the commutative property of multiplication.
a4+4a2-4⋅4a⋅a+4a2+4⋅4
Step 8.2.4
Multiply a by a by adding the exponents.
Step 8.2.4.1
Move a.
a4+4a2-4⋅4(a⋅a)+4a2+4⋅4
Step 8.2.4.2
Multiply a by a.
a4+4a2-4⋅4a2+4a2+4⋅4
a4+4a2-4⋅4a2+4a2+4⋅4
Step 8.2.5
Multiply -4 by 4.
a4+4a2-16a2+4a2+4⋅4
Step 8.2.6
Multiply 4 by 4.
a4+4a2-16a2+4a2+16
a4+4a2-16a2+4a2+16
Step 8.3
Simplify by adding terms.
Step 8.3.1
Subtract 16a2 from 4a2.
a4-12a2+4a2+16
Step 8.3.2
Add -12a2 and 4a2.
a4-8a2+16
a4-8a2+16
a4-8a2+16