Enter a problem...
Basic Math Examples
a2+(2a-3)(a+2)a(a-2)⋅a-22a-3a2+(2a−3)(a+2)a(a−2)⋅a−22a−3
Step 1
Step 1.1
Expand (2a-3)(a+2)(2a−3)(a+2) using the FOIL Method.
Step 1.1.1
Apply the distributive property.
a2+2a(a+2)-3(a+2)a(a-2)⋅a-22a-3a2+2a(a+2)−3(a+2)a(a−2)⋅a−22a−3
Step 1.1.2
Apply the distributive property.
a2+2a⋅a+2a⋅2-3(a+2)a(a-2)⋅a-22a-3a2+2a⋅a+2a⋅2−3(a+2)a(a−2)⋅a−22a−3
Step 1.1.3
Apply the distributive property.
a2+2a⋅a+2a⋅2-3a-3⋅2a(a-2)⋅a-22a-3a2+2a⋅a+2a⋅2−3a−3⋅2a(a−2)⋅a−22a−3
a2+2a⋅a+2a⋅2-3a-3⋅2a(a-2)⋅a-22a-3a2+2a⋅a+2a⋅2−3a−3⋅2a(a−2)⋅a−22a−3
Step 1.2
Simplify and combine like terms.
Step 1.2.1
Simplify each term.
Step 1.2.1.1
Multiply aa by aa by adding the exponents.
Step 1.2.1.1.1
Move aa.
a2+2(a⋅a)+2a⋅2-3a-3⋅2a(a-2)⋅a-22a-3a2+2(a⋅a)+2a⋅2−3a−3⋅2a(a−2)⋅a−22a−3
Step 1.2.1.1.2
Multiply aa by aa.
a2+2a2+2a⋅2-3a-3⋅2a(a-2)⋅a-22a-3a2+2a2+2a⋅2−3a−3⋅2a(a−2)⋅a−22a−3
a2+2a2+2a⋅2-3a-3⋅2a(a-2)⋅a-22a-3a2+2a2+2a⋅2−3a−3⋅2a(a−2)⋅a−22a−3
Step 1.2.1.2
Multiply 22 by 22.
a2+2a2+4a-3a-3⋅2a(a-2)⋅a-22a-3a2+2a2+4a−3a−3⋅2a(a−2)⋅a−22a−3
Step 1.2.1.3
Multiply -3−3 by 22.
a2+2a2+4a-3a-6a(a-2)⋅a-22a-3a2+2a2+4a−3a−6a(a−2)⋅a−22a−3
a2+2a2+4a-3a-6a(a-2)⋅a-22a-3a2+2a2+4a−3a−6a(a−2)⋅a−22a−3
Step 1.2.2
Subtract 3a3a from 4a4a.
a2+2a2+a-6a(a-2)⋅a-22a-3a2+2a2+a−6a(a−2)⋅a−22a−3
a2+2a2+a-6a(a-2)⋅a-22a-3a2+2a2+a−6a(a−2)⋅a−22a−3
Step 1.3
Add a2a2 and 2a22a2.
3a2+a-6a(a-2)⋅a-22a-33a2+a−6a(a−2)⋅a−22a−3
3a2+a-6a(a-2)⋅a-22a-33a2+a−6a(a−2)⋅a−22a−3
Step 2
Step 2.1
Cancel the common factor of a-2a−2.
Step 2.1.1
Factor a-2a−2 out of a(a-2)a(a−2).
3a2+a-6(a-2)a⋅a-22a-33a2+a−6(a−2)a⋅a−22a−3
Step 2.1.2
Cancel the common factor.
3a2+a-6(a-2)a⋅a-22a-3
Step 2.1.3
Rewrite the expression.
3a2+a-6a⋅12a-3
3a2+a-6a⋅12a-3
Step 2.2
Multiply 3a2+a-6a by 12a-3.
3a2+a-6a(2a-3)
3a2+a-6a(2a-3)