Basic Math Examples

Simplify ((2.88^(1/2))/(2^(1/2)))÷((0.09)^(3/2))
2.8812212÷(0.09)322.8812212÷(0.09)32
Step 1
Rewrite the division as a fraction.
2.8812212(0.09)322.8812212(0.09)32
Step 2
Multiply the numerator by the reciprocal of the denominator.
2.881221210.09322.881221210.0932
Step 3
Combine fractions.
Tap for more steps...
Step 3.1
Combine.
2.881212120.09322.881212120.0932
Step 3.2
Multiply 2.88122.8812 by 11.
2.88122120.09322.88122120.0932
2.88122120.09322.88122120.0932
Step 4
Simplify the denominator.
Tap for more steps...
Step 4.1
Rewrite 0.090.09 as 0.320.32.
2.8812212(0.32)322.8812212(0.32)32
Step 4.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
2.88122120.32(32)2.88122120.32(32)
Step 4.3
Cancel the common factor of 22.
Tap for more steps...
Step 4.3.1
Cancel the common factor.
2.88122120.32(32)
Step 4.3.2
Rewrite the expression.
2.88122120.33
2.88122120.33
Step 4.4
Raise 0.3 to the power of 3.
2.88122120.027
2.88122120.027
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Rewrite 2.88 as 1.697056272.
(1.697056272)122120.027
Step 5.2
Apply the power rule and multiply exponents, (am)n=amn.
1.697056272(12)2120.027
Step 5.3
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.1
Cancel the common factor.
1.697056272(12)2120.027
Step 5.3.2
Rewrite the expression.
1.6970562712120.027
1.6970562712120.027
Step 5.4
Evaluate the exponent.
1.697056272120.027
1.697056272120.027
Step 6
Simplify by multiplying terms.
Tap for more steps...
Step 6.1
Multiply 212 by 0.027.
1.697056270.03818376
Step 6.2
Divide 1.69705627 by 0.03818376.
44.44444444
44.44444444
 [x2  12  π  xdx ]