Enter a problem...
Basic Math Examples
(t-9)225-t2÷t2-81t-5(t−9)225−t2÷t2−81t−5
Step 1
To divide by a fraction, multiply by its reciprocal.
(t-9)225-t2⋅t-5t2-81(t−9)225−t2⋅t−5t2−81
Step 2
Step 2.1
Rewrite 2525 as 5252.
(t-9)252-t2⋅t-5t2-81(t−9)252−t2⋅t−5t2−81
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=5a=5 and b=tb=t.
(t-9)2(5+t)(5-t)⋅t-5t2-81(t−9)2(5+t)(5−t)⋅t−5t2−81
(t-9)2(5+t)(5-t)⋅t-5t2-81(t−9)2(5+t)(5−t)⋅t−5t2−81
Step 3
Step 3.1
Rewrite 8181 as 9292.
(t-9)2(5+t)(5-t)⋅t-5t2-92(t−9)2(5+t)(5−t)⋅t−5t2−92
Step 3.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=ta=t and b=9b=9.
(t-9)2(5+t)(5-t)⋅t-5(t+9)(t-9)(t−9)2(5+t)(5−t)⋅t−5(t+9)(t−9)
(t-9)2(5+t)(5-t)⋅t-5(t+9)(t-9)(t−9)2(5+t)(5−t)⋅t−5(t+9)(t−9)
Step 4
Step 4.1
Cancel the common factor of t-9t−9.
Step 4.1.1
Factor t-9t−9 out of (t-9)2(t−9)2.
(t-9)(t-9)(5+t)(5-t)⋅t-5(t+9)(t-9)(t−9)(t−9)(5+t)(5−t)⋅t−5(t+9)(t−9)
Step 4.1.2
Factor t-9t−9 out of (t+9)(t-9)(t+9)(t−9).
(t-9)(t-9)(5+t)(5-t)⋅t-5(t-9)(t+9)(t−9)(t−9)(5+t)(5−t)⋅t−5(t−9)(t+9)
Step 4.1.3
Cancel the common factor.
(t-9)(t-9)(5+t)(5-t)⋅t-5(t-9)(t+9)
Step 4.1.4
Rewrite the expression.
t-9(5+t)(5-t)⋅t-5t+9
t-9(5+t)(5-t)⋅t-5t+9
Step 4.2
Multiply t-9(5+t)(5-t) by t-5t+9.
(t-9)(t-5)(5+t)(5-t)(t+9)
Step 4.3
Cancel the common factor of t-5 and 5-t.
Step 4.3.1
Factor -1 out of t.
(t-9)(-1(-t)-5)(5+t)(5-t)(t+9)
Step 4.3.2
Rewrite -5 as -1(5).
(t-9)(-1(-t)-1(5))(5+t)(5-t)(t+9)
Step 4.3.3
Factor -1 out of -1(-t)-1(5).
(t-9)(-1(-t+5))(5+t)(5-t)(t+9)
Step 4.3.4
Reorder terms.
(t-9)(-1(-t+5))(5+t)(-t+5)(t+9)
Step 4.3.5
Cancel the common factor.
(t-9)(-1(-t+5))(5+t)(-t+5)(t+9)
Step 4.3.6
Rewrite the expression.
(t-9)⋅(-1)(5+t)(t+9)
(t-9)⋅(-1)(5+t)(t+9)
Step 4.4
Simplify the expression.
Step 4.4.1
Move -1 to the left of t-9.
-1⋅(t-9)(5+t)(t+9)
Step 4.4.2
Move the negative in front of the fraction.
-t-9(5+t)(t+9)
-t-9(5+t)(t+9)
-t-9(5+t)(t+9)