Basic Math Examples

Simplify ((2y)^2z^3)/(y^-1y^-5)*(5y^-2)^-3
(2y)2z3y-1y-5(5y-2)-3(2y)2z3y1y5(5y2)3
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Apply the product rule to 2y2y.
22y2z3y-1y-5(5y-2)-322y2z3y1y5(5y2)3
Step 1.2
Raise 22 to the power of 22.
4y2z3y-1y-5(5y-2)-34y2z3y1y5(5y2)3
4y2z3y-1y-5(5y-2)-34y2z3y1y5(5y2)3
Step 2
Multiply y-1y1 by y-5y5 by adding the exponents.
Tap for more steps...
Step 2.1
Use the power rule aman=am+naman=am+n to combine exponents.
4y2z3y-1-5(5y-2)-34y2z3y15(5y2)3
Step 2.2
Subtract 5 from -1.
4y2z3y-6(5y-2)-3
4y2z3y-6(5y-2)-3
Step 3
Rewrite the expression using the negative exponent rule b-n=1bn.
4y2z31y6(5y-2)-3
Step 4
Multiply the numerator by the reciprocal of the denominator.
4y2z3y6(5y-2)-3
Step 5
Multiply y2 by y6 by adding the exponents.
Tap for more steps...
Step 5.1
Move y6.
4(y6y2)z3(5y-2)-3
Step 5.2
Use the power rule aman=am+n to combine exponents.
4y6+2z3(5y-2)-3
Step 5.3
Add 6 and 2.
4y8z3(5y-2)-3
4y8z3(5y-2)-3
Step 6
Rewrite the expression using the negative exponent rule b-n=1bn.
4y8z3(51y2)-3
Step 7
Combine 5 and 1y2.
4y8z3(5y2)-3
Step 8
Change the sign of the exponent by rewriting the base as its reciprocal.
4y8z3(y25)3
Step 9
Apply the product rule to y25.
4y8z3(y2)353
Step 10
Multiply the exponents in (y2)3.
Tap for more steps...
Step 10.1
Apply the power rule and multiply exponents, (am)n=amn.
4y8z3y2353
Step 10.2
Multiply 2 by 3.
4y8z3y653
4y8z3y653
Step 11
Raise 5 to the power of 3.
4y8z3y6125
Step 12
Multiply 4y8z3y6125.
Tap for more steps...
Step 12.1
Combine 4 and y6125.
y8z34y6125
Step 12.2
Combine y8 and 4y6125.
z3y8(4y6)125
Step 12.3
Multiply y8 by y6 by adding the exponents.
Tap for more steps...
Step 12.3.1
Move y6.
z3y6y84125
Step 12.3.2
Use the power rule aman=am+n to combine exponents.
z3y6+84125
Step 12.3.3
Add 6 and 8.
z3y144125
z3y144125
Step 12.4
Combine z3 and y144125.
z3(y144)125
z3(y144)125
Step 13
Move 4 to the left of z3y14.
4z3y14125
 [x2  12  π  xdx ]