Enter a problem...
Basic Math Examples
(-6(p+q)9)23(−6(p+q)9)23
Step 1
Step 1.1
Apply the product rule to -6(p+q)9−6(p+q)9.
(-6)23((p+q)9)23(−6)23((p+q)9)23
Step 1.2
Multiply the exponents in ((p+q)9)23((p+q)9)23.
Step 1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(-6)23(p+q)9(23)(−6)23(p+q)9(23)
Step 1.2.2
Cancel the common factor of 33.
Step 1.2.2.1
Factor 33 out of 99.
(-6)23(p+q)3(3)23(−6)23(p+q)3(3)23
Step 1.2.2.2
Cancel the common factor.
(-6)23(p+q)3⋅323
Step 1.2.2.3
Rewrite the expression.
(-6)23(p+q)3⋅2
(-6)23(p+q)3⋅2
Step 1.2.3
Multiply 3 by 2.
(-6)23(p+q)6
(-6)23(p+q)6
(-6)23(p+q)6
Step 2
Use the Binomial Theorem.
(-6)23(p6+6p5q+15p4q2+20p3q3+15p2q4+6pq5+q6)
Step 3
Apply the distributive property.
(-6)23p6+(-6)23(6p5q)+(-6)23(15p4q2)+(-6)23(20p3q3)+(-6)23(15p2q4)+(-6)23(6pq5)+(-6)23q6
Step 4
Remove parentheses.
(-6)23p6+(-6)23⋅6p5q+(-6)23⋅15p4q2+(-6)23⋅20p3q3+(-6)23⋅15p2q4+(-6)23⋅6pq5+(-6)23q6
Step 5
Step 5.1
Move 6 to the left of (-6)23.
(-6)23p6+6⋅(-6)23p5q+(-6)23⋅15p4q2+(-6)23⋅20p3q3+(-6)23⋅15p2q4+(-6)23⋅6pq5+(-6)23q6
Step 5.2
Move 15 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+15⋅(-6)23p4q2+(-6)23⋅20p3q3+(-6)23⋅15p2q4+(-6)23⋅6pq5+(-6)23q6
Step 5.3
Move 20 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+20⋅(-6)23p3q3+(-6)23⋅15p2q4+(-6)23⋅6pq5+(-6)23q6
Step 5.4
Move 15 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+15⋅(-6)23p2q4+(-6)23⋅6pq5+(-6)23q6
Step 5.5
Move 6 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+15(-6)23p2q4+6(-6)23pq5+(-6)23q6
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+15(-6)23p2q4+6(-6)23pq5+(-6)23q6
Step 6
Reorder factors in (-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+15(-6)23p2q4+6(-6)23pq5+(-6)23q6.
p6(-6)23+6p5q(-6)23+15p4q2(-6)23+20p3q3(-6)23+15p2q4(-6)23+6pq5(-6)23+q6(-6)23