Basic Math Examples

Simplify (-6(p+q)^9)^(2/3)
(-6(p+q)9)23(6(p+q)9)23
Step 1
Apply basic rules of exponents.
Tap for more steps...
Step 1.1
Apply the product rule to -6(p+q)96(p+q)9.
(-6)23((p+q)9)23(6)23((p+q)9)23
Step 1.2
Multiply the exponents in ((p+q)9)23((p+q)9)23.
Tap for more steps...
Step 1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(-6)23(p+q)9(23)(6)23(p+q)9(23)
Step 1.2.2
Cancel the common factor of 33.
Tap for more steps...
Step 1.2.2.1
Factor 33 out of 99.
(-6)23(p+q)3(3)23(6)23(p+q)3(3)23
Step 1.2.2.2
Cancel the common factor.
(-6)23(p+q)3323
Step 1.2.2.3
Rewrite the expression.
(-6)23(p+q)32
(-6)23(p+q)32
Step 1.2.3
Multiply 3 by 2.
(-6)23(p+q)6
(-6)23(p+q)6
(-6)23(p+q)6
Step 2
Use the Binomial Theorem.
(-6)23(p6+6p5q+15p4q2+20p3q3+15p2q4+6pq5+q6)
Step 3
Apply the distributive property.
(-6)23p6+(-6)23(6p5q)+(-6)23(15p4q2)+(-6)23(20p3q3)+(-6)23(15p2q4)+(-6)23(6pq5)+(-6)23q6
Step 4
Remove parentheses.
(-6)23p6+(-6)236p5q+(-6)2315p4q2+(-6)2320p3q3+(-6)2315p2q4+(-6)236pq5+(-6)23q6
Step 5
Simplify each term.
Tap for more steps...
Step 5.1
Move 6 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+(-6)2315p4q2+(-6)2320p3q3+(-6)2315p2q4+(-6)236pq5+(-6)23q6
Step 5.2
Move 15 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+(-6)2320p3q3+(-6)2315p2q4+(-6)236pq5+(-6)23q6
Step 5.3
Move 20 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+(-6)2315p2q4+(-6)236pq5+(-6)23q6
Step 5.4
Move 15 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+15(-6)23p2q4+(-6)236pq5+(-6)23q6
Step 5.5
Move 6 to the left of (-6)23.
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+15(-6)23p2q4+6(-6)23pq5+(-6)23q6
(-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+15(-6)23p2q4+6(-6)23pq5+(-6)23q6
Step 6
Reorder factors in (-6)23p6+6(-6)23p5q+15(-6)23p4q2+20(-6)23p3q3+15(-6)23p2q4+6(-6)23pq5+(-6)23q6.
p6(-6)23+6p5q(-6)23+15p4q2(-6)23+20p3q3(-6)23+15p2q4(-6)23+6pq5(-6)23+q6(-6)23
 [x2  12  π  xdx ]