Basic Math Examples

Simplify (a^-1+b^-1)^-1(a^-1-b^-1)^-1
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite the expression using the negative exponent rule .
Step 1.2
Rewrite the expression using the negative exponent rule .
Step 2
Rewrite the expression using the negative exponent rule .
Step 3
Simplify the denominator.
Tap for more steps...
Step 3.1
To write as a fraction with a common denominator, multiply by .
Step 3.2
To write as a fraction with a common denominator, multiply by .
Step 3.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 3.3.1
Multiply by .
Step 3.3.2
Multiply by .
Step 3.3.3
Reorder the factors of .
Step 3.4
Combine the numerators over the common denominator.
Step 4
Multiply the numerator by the reciprocal of the denominator.
Step 5
Multiply by .
Step 6
Simplify each term.
Tap for more steps...
Step 6.1
Rewrite the expression using the negative exponent rule .
Step 6.2
Rewrite the expression using the negative exponent rule .
Step 7
Rewrite the expression using the negative exponent rule .
Step 8
Simplify the denominator.
Tap for more steps...
Step 8.1
To write as a fraction with a common denominator, multiply by .
Step 8.2
To write as a fraction with a common denominator, multiply by .
Step 8.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 8.3.1
Multiply by .
Step 8.3.2
Multiply by .
Step 8.3.3
Reorder the factors of .
Step 8.4
Combine the numerators over the common denominator.
Step 9
Multiply the numerator by the reciprocal of the denominator.
Step 10
Multiply by .
Step 11
Multiply .
Tap for more steps...
Step 11.1
Multiply by .
Step 11.2
Raise to the power of .
Step 11.3
Raise to the power of .
Step 11.4
Use the power rule to combine exponents.
Step 11.5
Add and .
Step 11.6
Raise to the power of .
Step 11.7
Raise to the power of .
Step 11.8
Use the power rule to combine exponents.
Step 11.9
Add and .