Basic Math Examples

Simplify ( square root of 2+1)/( square root of 3+1)-( square root of 2-1)/( square root of 5- square root of 3)
2+13+1-2-15-32+13+12153
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Multiply 2+13+12+13+1 by 3-13-13131.
2+13+13-13-1-2-15-32+13+131312153
Step 1.2
Multiply 2+13+12+13+1 by 3-13-13131.
(2+1)(3-1)(3+1)(3-1)-2-15-3(2+1)(31)(3+1)(31)2153
Step 1.3
Expand the denominator using the FOIL method.
(2+1)(3-1)32+3-1+3-1-2-15-3(2+1)(31)32+31+312153
Step 1.4
Simplify.
(2+1)(3-1)2-2-15-3(2+1)(31)22153
Step 1.5
Expand (2+1)(3-1)(2+1)(31) using the FOIL Method.
Tap for more steps...
Step 1.5.1
Apply the distributive property.
2(3-1)+1(3-1)2-2-15-32(31)+1(31)22153
Step 1.5.2
Apply the distributive property.
23+2-1+1(3-1)2-2-15-323+21+1(31)22153
Step 1.5.3
Apply the distributive property.
23+2-1+13+1-12-2-15-323+21+13+1122153
23+2-1+13+1-12-2-15-323+21+13+1122153
Step 1.6
Simplify each term.
Tap for more steps...
Step 1.6.1
Combine using the product rule for radicals.
23+2-1+13+1-12-2-15-323+21+13+1122153
Step 1.6.2
Multiply 2 by 3.
6+2-1+13+1-12-2-15-3
Step 1.6.3
Move -1 to the left of 2.
6-12+13+1-12-2-15-3
Step 1.6.4
Rewrite -12 as -2.
6-2+13+1-12-2-15-3
Step 1.6.5
Multiply 3 by 1.
6-2+3+1-12-2-15-3
Step 1.6.6
Multiply -1 by 1.
6-2+3-12-2-15-3
6-2+3-12-2-15-3
Step 1.7
Multiply 2-15-3 by 5+35+3.
6-2+3-12-(2-15-35+35+3)
Step 1.8
Multiply 2-15-3 by 5+35+3.
6-2+3-12-(2-1)(5+3)(5-3)(5+3)
Step 1.9
Expand the denominator using the FOIL method.
6-2+3-12-(2-1)(5+3)52+15-15-32
Step 1.10
Simplify.
6-2+3-12-(2-1)(5+3)2
Step 1.11
Expand (2-1)(5+3) using the FOIL Method.
Tap for more steps...
Step 1.11.1
Apply the distributive property.
6-2+3-12-2(5+3)-1(5+3)2
Step 1.11.2
Apply the distributive property.
6-2+3-12-25+23-1(5+3)2
Step 1.11.3
Apply the distributive property.
6-2+3-12-25+23-15-132
6-2+3-12-25+23-15-132
Step 1.12
Simplify each term.
Tap for more steps...
Step 1.12.1
Combine using the product rule for radicals.
6-2+3-12-25+23-15-132
Step 1.12.2
Multiply 2 by 5.
6-2+3-12-10+23-15-132
Step 1.12.3
Combine using the product rule for radicals.
6-2+3-12-10+23-15-132
Step 1.12.4
Multiply 2 by 3.
6-2+3-12-10+6-15-132
Step 1.12.5
Rewrite -15 as -5.
6-2+3-12-10+6-5-132
Step 1.12.6
Rewrite -13 as -3.
6-2+3-12-10+6-5-32
6-2+3-12-10+6-5-32
6-2+3-12-10+6-5-32
Step 2
Combine the numerators over the common denominator.
6-2+3-1-(10+6-5-3)2
Step 3
Simplify each term.
Tap for more steps...
Step 3.1
Apply the distributive property.
6-2+3-1-10-6--5--32
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Multiply --5.
Tap for more steps...
Step 3.2.1.1
Multiply -1 by -1.
6-2+3-1-10-6+15--32
Step 3.2.1.2
Multiply 5 by 1.
6-2+3-1-10-6+5--32
6-2+3-1-10-6+5--32
Step 3.2.2
Multiply --3.
Tap for more steps...
Step 3.2.2.1
Multiply -1 by -1.
6-2+3-1-10-6+5+132
Step 3.2.2.2
Multiply 3 by 1.
6-2+3-1-10-6+5+32
6-2+3-1-10-6+5+32
6-2+3-1-10-6+5+32
6-2+3-1-10-6+5+32
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Subtract 6 from 6.
0-2+3-1-10+5+32
Step 4.2
Subtract 2 from 0.
-2+3-1-10+5+32
Step 4.3
Add 3 and 3.
-2-1-10+5+232
Step 4.4
Factor -1 out of -2.
-(2)-1-10+5+232
Step 4.5
Rewrite -1 as -1(1).
-(2)-1(1)-10+5+232
Step 4.6
Factor -1 out of -(2)-1(1).
-(2+1)-10+5+232
Step 4.7
Factor -1 out of -10.
-(2+1)-(10)+5+232
Step 4.8
Factor -1 out of -(2+1)-(10).
-(2+1+10)+5+232
Step 4.9
Factor -1 out of 5.
-(2+1+10)-1(-5)+232
Step 4.10
Factor -1 out of -(2+1+10)-1(-5).
-(2+1+10-5)+232
Step 4.11
Factor -1 out of 23.
-(2+1+10-5)-(-23)2
Step 4.12
Factor -1 out of -(2+1+10-5)-(-23).
-(2+1+10-5-23)2
Step 4.13
Simplify the expression.
Tap for more steps...
Step 4.13.1
Rewrite -(2+1+10-5-23) as -1(2+1+10-5-23).
-1(2+1+10-5-23)2
Step 4.13.2
Move the negative in front of the fraction.
-2+1+10-5-232
-2+1+10-5-232
-2+1+10-5-232
Step 5
The result can be shown in multiple forms.
Exact Form:
-2+1+10-5-232
Decimal Form:
0.06183918
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]