Enter a problem...
Basic Math Examples
√2+1√3+1-√2-1√5-√3√2+1√3+1−√2−1√5−√3
Step 1
Step 1.1
Multiply √2+1√3+1√2+1√3+1 by √3-1√3-1√3−1√3−1.
√2+1√3+1⋅√3-1√3-1-√2-1√5-√3√2+1√3+1⋅√3−1√3−1−√2−1√5−√3
Step 1.2
Multiply √2+1√3+1√2+1√3+1 by √3-1√3-1√3−1√3−1.
(√2+1)(√3-1)(√3+1)(√3-1)-√2-1√5-√3(√2+1)(√3−1)(√3+1)(√3−1)−√2−1√5−√3
Step 1.3
Expand the denominator using the FOIL method.
(√2+1)(√3-1)√32+√3⋅-1+√3-1-√2-1√5-√3(√2+1)(√3−1)√32+√3⋅−1+√3−1−√2−1√5−√3
Step 1.4
Simplify.
(√2+1)(√3-1)2-√2-1√5-√3(√2+1)(√3−1)2−√2−1√5−√3
Step 1.5
Expand (√2+1)(√3-1)(√2+1)(√3−1) using the FOIL Method.
Step 1.5.1
Apply the distributive property.
√2(√3-1)+1(√3-1)2-√2-1√5-√3√2(√3−1)+1(√3−1)2−√2−1√5−√3
Step 1.5.2
Apply the distributive property.
√2√3+√2⋅-1+1(√3-1)2-√2-1√5-√3√2√3+√2⋅−1+1(√3−1)2−√2−1√5−√3
Step 1.5.3
Apply the distributive property.
√2√3+√2⋅-1+1√3+1⋅-12-√2-1√5-√3√2√3+√2⋅−1+1√3+1⋅−12−√2−1√5−√3
√2√3+√2⋅-1+1√3+1⋅-12-√2-1√5-√3√2√3+√2⋅−1+1√3+1⋅−12−√2−1√5−√3
Step 1.6
Simplify each term.
Step 1.6.1
Combine using the product rule for radicals.
√2⋅3+√2⋅-1+1√3+1⋅-12-√2-1√5-√3√2⋅3+√2⋅−1+1√3+1⋅−12−√2−1√5−√3
Step 1.6.2
Multiply 2 by 3.
√6+√2⋅-1+1√3+1⋅-12-√2-1√5-√3
Step 1.6.3
Move -1 to the left of √2.
√6-1⋅√2+1√3+1⋅-12-√2-1√5-√3
Step 1.6.4
Rewrite -1√2 as -√2.
√6-√2+1√3+1⋅-12-√2-1√5-√3
Step 1.6.5
Multiply √3 by 1.
√6-√2+√3+1⋅-12-√2-1√5-√3
Step 1.6.6
Multiply -1 by 1.
√6-√2+√3-12-√2-1√5-√3
√6-√2+√3-12-√2-1√5-√3
Step 1.7
Multiply √2-1√5-√3 by √5+√3√5+√3.
√6-√2+√3-12-(√2-1√5-√3⋅√5+√3√5+√3)
Step 1.8
Multiply √2-1√5-√3 by √5+√3√5+√3.
√6-√2+√3-12-(√2-1)(√5+√3)(√5-√3)(√5+√3)
Step 1.9
Expand the denominator using the FOIL method.
√6-√2+√3-12-(√2-1)(√5+√3)√52+√15-√15-√32
Step 1.10
Simplify.
√6-√2+√3-12-(√2-1)(√5+√3)2
Step 1.11
Expand (√2-1)(√5+√3) using the FOIL Method.
Step 1.11.1
Apply the distributive property.
√6-√2+√3-12-√2(√5+√3)-1(√5+√3)2
Step 1.11.2
Apply the distributive property.
√6-√2+√3-12-√2√5+√2√3-1(√5+√3)2
Step 1.11.3
Apply the distributive property.
√6-√2+√3-12-√2√5+√2√3-1√5-1√32
√6-√2+√3-12-√2√5+√2√3-1√5-1√32
Step 1.12
Simplify each term.
Step 1.12.1
Combine using the product rule for radicals.
√6-√2+√3-12-√2⋅5+√2√3-1√5-1√32
Step 1.12.2
Multiply 2 by 5.
√6-√2+√3-12-√10+√2√3-1√5-1√32
Step 1.12.3
Combine using the product rule for radicals.
√6-√2+√3-12-√10+√2⋅3-1√5-1√32
Step 1.12.4
Multiply 2 by 3.
√6-√2+√3-12-√10+√6-1√5-1√32
Step 1.12.5
Rewrite -1√5 as -√5.
√6-√2+√3-12-√10+√6-√5-1√32
Step 1.12.6
Rewrite -1√3 as -√3.
√6-√2+√3-12-√10+√6-√5-√32
√6-√2+√3-12-√10+√6-√5-√32
√6-√2+√3-12-√10+√6-√5-√32
Step 2
Combine the numerators over the common denominator.
√6-√2+√3-1-(√10+√6-√5-√3)2
Step 3
Step 3.1
Apply the distributive property.
√6-√2+√3-1-√10-√6--√5--√32
Step 3.2
Simplify.
Step 3.2.1
Multiply --√5.
Step 3.2.1.1
Multiply -1 by -1.
√6-√2+√3-1-√10-√6+1√5--√32
Step 3.2.1.2
Multiply √5 by 1.
√6-√2+√3-1-√10-√6+√5--√32
√6-√2+√3-1-√10-√6+√5--√32
Step 3.2.2
Multiply --√3.
Step 3.2.2.1
Multiply -1 by -1.
√6-√2+√3-1-√10-√6+√5+1√32
Step 3.2.2.2
Multiply √3 by 1.
√6-√2+√3-1-√10-√6+√5+√32
√6-√2+√3-1-√10-√6+√5+√32
√6-√2+√3-1-√10-√6+√5+√32
√6-√2+√3-1-√10-√6+√5+√32
Step 4
Step 4.1
Subtract √6 from √6.
0-√2+√3-1-√10+√5+√32
Step 4.2
Subtract √2 from 0.
-√2+√3-1-√10+√5+√32
Step 4.3
Add √3 and √3.
-√2-1-√10+√5+2√32
Step 4.4
Factor -1 out of -√2.
-(√2)-1-√10+√5+2√32
Step 4.5
Rewrite -1 as -1(1).
-(√2)-1(1)-√10+√5+2√32
Step 4.6
Factor -1 out of -(√2)-1(1).
-(√2+1)-√10+√5+2√32
Step 4.7
Factor -1 out of -√10.
-(√2+1)-(√10)+√5+2√32
Step 4.8
Factor -1 out of -(√2+1)-(√10).
-(√2+1+√10)+√5+2√32
Step 4.9
Factor -1 out of √5.
-(√2+1+√10)-1(-√5)+2√32
Step 4.10
Factor -1 out of -(√2+1+√10)-1(-√5).
-(√2+1+√10-√5)+2√32
Step 4.11
Factor -1 out of 2√3.
-(√2+1+√10-√5)-(-2√3)2
Step 4.12
Factor -1 out of -(√2+1+√10-√5)-(-2√3).
-(√2+1+√10-√5-2√3)2
Step 4.13
Simplify the expression.
Step 4.13.1
Rewrite -(√2+1+√10-√5-2√3) as -1(√2+1+√10-√5-2√3).
-1(√2+1+√10-√5-2√3)2
Step 4.13.2
Move the negative in front of the fraction.
-√2+1+√10-√5-2√32
-√2+1+√10-√5-2√32
-√2+1+√10-√5-2√32
Step 5
The result can be shown in multiple forms.
Exact Form:
-√2+1+√10-√5-2√32
Decimal Form:
0.06183918…