Basic Math Examples

Simplify ((z^3-8)/(z^3+8))÷((z^2-4)/(z^2-2z+4))
z3-8z3+8÷z2-4z2-2z+4z38z3+8÷z24z22z+4
Step 1
To divide by a fraction, multiply by its reciprocal.
z3-8z3+8z2-2z+4z2-4z38z3+8z22z+4z24
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Rewrite 88 as 2323.
z3-23z3+8z2-2z+4z2-4z323z3+8z22z+4z24
Step 2.2
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3b3=(ab)(a2+ab+b2) where a=za=z and b=2b=2.
(z-2)(z2+z2+22)z3+8z2-2z+4z2-4(z2)(z2+z2+22)z3+8z22z+4z24
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Move 22 to the left of zz.
(z-2)(z2+2z+22)z3+8z2-2z+4z2-4(z2)(z2+2z+22)z3+8z22z+4z24
Step 2.3.2
Raise 22 to the power of 22.
(z-2)(z2+2z+4)z3+8z2-2z+4z2-4(z2)(z2+2z+4)z3+8z22z+4z24
(z-2)(z2+2z+4)z3+8z2-2z+4z2-4(z2)(z2+2z+4)z3+8z22z+4z24
(z-2)(z2+2z+4)z3+8z2-2z+4z2-4(z2)(z2+2z+4)z3+8z22z+4z24
Step 3
Simplify the denominator.
Tap for more steps...
Step 3.1
Rewrite 88 as 2323.
(z-2)(z2+2z+4)z3+23z2-2z+4z2-4(z2)(z2+2z+4)z3+23z22z+4z24
Step 3.2
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2)a3+b3=(a+b)(a2ab+b2) where a=za=z and b=2b=2.
(z-2)(z2+2z+4)(z+2)(z2-z2+22)z2-2z+4z2-4(z2)(z2+2z+4)(z+2)(z2z2+22)z22z+4z24
Step 3.3
Simplify.
Tap for more steps...
Step 3.3.1
Multiply 22 by -11.
(z-2)(z2+2z+4)(z+2)(z2-2z+22)z2-2z+4z2-4(z2)(z2+2z+4)(z+2)(z22z+22)z22z+4z24
Step 3.3.2
Raise 22 to the power of 22.
(z-2)(z2+2z+4)(z+2)(z2-2z+4)z2-2z+4z2-4(z2)(z2+2z+4)(z+2)(z22z+4)z22z+4z24
(z-2)(z2+2z+4)(z+2)(z2-2z+4)z2-2z+4z2-4
(z-2)(z2+2z+4)(z+2)(z2-2z+4)z2-2z+4z2-4
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Cancel the common factor of z2-2z+4.
Tap for more steps...
Step 4.1.1
Factor z2-2z+4 out of (z+2)(z2-2z+4).
(z-2)(z2+2z+4)(z2-2z+4)(z+2)z2-2z+4z2-4
Step 4.1.2
Cancel the common factor.
(z-2)(z2+2z+4)(z2-2z+4)(z+2)z2-2z+4z2-4
Step 4.1.3
Rewrite the expression.
(z-2)(z2+2z+4)z+21z2-4
(z-2)(z2+2z+4)z+21z2-4
Step 4.2
Multiply (z-2)(z2+2z+4)z+2 by 1z2-4.
(z-2)(z2+2z+4)(z+2)(z2-4)
(z-2)(z2+2z+4)(z+2)(z2-4)
Step 5
Simplify the denominator.
Tap for more steps...
Step 5.1
Rewrite 4 as 22.
(z-2)(z2+2z+4)(z+2)(z2-22)
Step 5.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=z and b=2.
(z-2)(z2+2z+4)(z+2)(z+2)(z-2)
Step 5.3
Combine exponents.
Tap for more steps...
Step 5.3.1
Raise z+2 to the power of 1.
(z-2)(z2+2z+4)(z+2)1(z+2)(z-2)
Step 5.3.2
Raise z+2 to the power of 1.
(z-2)(z2+2z+4)(z+2)1(z+2)1(z-2)
Step 5.3.3
Use the power rule aman=am+n to combine exponents.
(z-2)(z2+2z+4)(z+2)1+1(z-2)
Step 5.3.4
Add 1 and 1.
(z-2)(z2+2z+4)(z+2)2(z-2)
(z-2)(z2+2z+4)(z+2)2(z-2)
(z-2)(z2+2z+4)(z+2)2(z-2)
Step 6
Cancel the common factor of z-2.
Tap for more steps...
Step 6.1
Cancel the common factor.
(z-2)(z2+2z+4)(z+2)2(z-2)
Step 6.2
Rewrite the expression.
z2+2z+4(z+2)2
z2+2z+4(z+2)2
 [x2  12  π  xdx ]