Basic Math Examples

Simplify ((b^(2-25))/(b^2+b-10))÷((5-b)/(b^2+5b-14))
b2-25b2+b-10÷5-bb2+5b-14b225b2+b10÷5bb2+5b14
Step 1
To divide by a fraction, multiply by its reciprocal.
b2-25b2+b-10b2+5b-145-bb225b2+b10b2+5b145b
Step 2
Move b2-25b225 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
1(b2+b-10)b-(2-25)b2+5b-145-b1(b2+b10)b(225)b2+5b145b
Step 3
Simplify the denominator.
Tap for more steps...
Step 3.1
Subtract 2525 from 22.
1(b2+b-10)b--23b2+5b-145-b1(b2+b10)b23b2+5b145b
Step 3.2
Multiply -11 by -2323.
1(b2+b-10)b23b2+5b-145-b1(b2+b10)b23b2+5b145b
1(b2+b-10)b23b2+5b-145-b1(b2+b10)b23b2+5b145b
Step 4
Factor b2+5b-14b2+5b14 using the AC method.
Tap for more steps...
Step 4.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is -1414 and whose sum is 55.
-2,72,7
Step 4.2
Write the factored form using these integers.
1(b2+b-10)b23(b-2)(b+7)5-b1(b2+b10)b23(b2)(b+7)5b
1(b2+b-10)b23(b-2)(b+7)5-b1(b2+b10)b23(b2)(b+7)5b
Step 5
Combine fractions.
Tap for more steps...
Step 5.1
Multiply 1(b2+b-10)b231(b2+b10)b23 by (b-2)(b+7)5-b(b2)(b+7)5b.
(b-2)(b+7)(b2+b-10)b23(5-b)
Step 5.2
Reorder factors in (b-2)(b+7)(b2+b-10)b23(5-b).
(b-2)(b+7)b23(b2+b-10)(5-b)
(b-2)(b+7)b23(b2+b-10)(5-b)
 [x2  12  π  xdx ]