Enter a problem...
Basic Math Examples
b2-25b2+b-10÷5-bb2+5b-14b2−25b2+b−10÷5−bb2+5b−14
Step 1
To divide by a fraction, multiply by its reciprocal.
b2-25b2+b-10⋅b2+5b-145-bb2−25b2+b−10⋅b2+5b−145−b
Step 2
Move b2-25b2−25 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
1(b2+b-10)b-(2-25)⋅b2+5b-145-b1(b2+b−10)b−(2−25)⋅b2+5b−145−b
Step 3
Step 3.1
Subtract 2525 from 22.
1(b2+b-10)b--23⋅b2+5b-145-b1(b2+b−10)b−−23⋅b2+5b−145−b
Step 3.2
Multiply -1−1 by -23−23.
1(b2+b-10)b23⋅b2+5b-145-b1(b2+b−10)b23⋅b2+5b−145−b
1(b2+b-10)b23⋅b2+5b-145-b1(b2+b−10)b23⋅b2+5b−145−b
Step 4
Step 4.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is -14−14 and whose sum is 55.
-2,7−2,7
Step 4.2
Write the factored form using these integers.
1(b2+b-10)b23⋅(b-2)(b+7)5-b1(b2+b−10)b23⋅(b−2)(b+7)5−b
1(b2+b-10)b23⋅(b-2)(b+7)5-b1(b2+b−10)b23⋅(b−2)(b+7)5−b
Step 5
Step 5.1
Multiply 1(b2+b-10)b231(b2+b−10)b23 by (b-2)(b+7)5-b(b−2)(b+7)5−b.
(b-2)(b+7)(b2+b-10)b23(5-b)
Step 5.2
Reorder factors in (b-2)(b+7)(b2+b-10)b23(5-b).
(b-2)(b+7)b23(b2+b-10)(5-b)
(b-2)(b+7)b23(b2+b-10)(5-b)