Enter a problem...
Basic Math Examples
r2-s2r+s÷rr2+srr2−s2r+s÷rr2+sr
Step 1
To divide by a fraction, multiply by its reciprocal.
r2-s2r+s⋅r2+srrr2−s2r+s⋅r2+srr
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=ra=r and b=sb=s.
(r+s)(r-s)r+s⋅r2+srr(r+s)(r−s)r+s⋅r2+srr
Step 3
Step 3.1
Cancel the common factor of r+sr+s.
Step 3.1.1
Cancel the common factor.
(r+s)(r-s)r+s⋅r2+srr
Step 3.1.2
Divide r-s by 1.
(r-s)r2+srr
(r-s)r2+srr
Step 3.2
Factor r out of r2+sr.
Step 3.2.1
Factor r out of r2.
(r-s)r⋅r+srr
Step 3.2.2
Factor r out of sr.
(r-s)r⋅r+rsr
Step 3.2.3
Factor r out of r⋅r+rs.
(r-s)r(r+s)r
(r-s)r(r+s)r
Step 3.3
Cancel the common factor of r.
Step 3.3.1
Cancel the common factor.
(r-s)r(r+s)r
Step 3.3.2
Divide r+s by 1.
(r-s)(r+s)
(r-s)(r+s)
(r-s)(r+s)
Step 4
Step 4.1
Apply the distributive property.
r(r+s)-s(r+s)
Step 4.2
Apply the distributive property.
r⋅r+rs-s(r+s)
Step 4.3
Apply the distributive property.
r⋅r+rs-sr-s⋅s
r⋅r+rs-sr-s⋅s
Step 5
Step 5.1
Combine the opposite terms in r⋅r+rs-sr-s⋅s.
Step 5.1.1
Reorder the factors in the terms rs and -sr.
r⋅r+rs-rs-s⋅s
Step 5.1.2
Subtract rs from rs.
r⋅r+0-s⋅s
Step 5.1.3
Add r⋅r and 0.
r⋅r-s⋅s
r⋅r-s⋅s
Step 5.2
Simplify each term.
Step 5.2.1
Multiply r by r.
r2-s⋅s
Step 5.2.2
Multiply s by s by adding the exponents.
Step 5.2.2.1
Move s.
r2-(s⋅s)
Step 5.2.2.2
Multiply s by s.
r2-s2
r2-s2
r2-s2
r2-s2