Basic Math Examples

Simplify (80.99-81)/( square root of 80.99-9)
80.99-8180.99-980.998180.999
Step 1
Subtract 8181 from 80.9980.99.
-0.0180.99-90.0180.999
Step 2
Move the negative in front of the fraction.
-0.0180.99-90.0180.999
Step 3
Multiply 0.0180.99-90.0180.999 by 80.99+980.99+980.99+980.99+9.
-(0.0180.99-980.99+980.99+9)(0.0180.99980.99+980.99+9)
Step 4
Multiply 0.0180.99-90.0180.999 by 80.99+980.99+980.99+980.99+9.
-0.01(80.99+9)(80.99-9)(80.99+9)0.01(80.99+9)(80.999)(80.99+9)
Step 5
Expand the denominator using the FOIL method.
-0.01(80.99+9)80.992+80.999-980.99-810.01(80.99+9)80.992+80.999980.9981
Step 6
Simplify.
-0.01(80.99+9)-0.010.01(80.99+9)0.01
Step 7
Cancel the common factor of 0.010.01 and -0.010.01.
Tap for more steps...
Step 7.1
Rewrite 0.010.01 as -1(-0.01)1(0.01).
--1(-0.01)(80.99+9)-0.011(0.01)(80.99+9)0.01
Step 7.2
Cancel the common factor.
--1-0.01(80.99+9)-0.01
Step 7.3
Divide -(80.99+9) by 1.
--(80.99+9)
--(80.99+9)
Step 8
Apply the distributive property.
-(-80.99-19)
Step 9
Multiply -1 by 9.
-(-80.99-9)
Step 10
Apply the distributive property.
--80.99--9
Step 11
Multiply --80.99.
Tap for more steps...
Step 11.1
Multiply -1 by -1.
180.99--9
Step 11.2
Multiply 80.99 by 1.
80.99--9
80.99--9
Step 12
Multiply -1 by -9.
80.99+9
Step 13
The result can be shown in multiple forms.
Exact Form:
80.99+9
Decimal Form:
17.99944442
 [x2  12  π  xdx ]