Basic Math Examples

Simplify ((9y^2-28+3)/(9y^2+80y-9))÷((27y^2-12y+1)/(3y^2+26y-9))
Step 1
To divide by a fraction, multiply by its reciprocal.
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Add and .
Step 2.2
Rewrite as .
Step 2.3
Rewrite as .
Step 2.4
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3
Factor by grouping.
Tap for more steps...
Step 3.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 3.1.1
Factor out of .
Step 3.1.2
Rewrite as plus
Step 3.1.3
Apply the distributive property.
Step 3.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 3.2.1
Group the first two terms and the last two terms.
Step 3.2.2
Factor out the greatest common factor (GCF) from each group.
Step 3.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4
Factor by grouping.
Tap for more steps...
Step 4.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 4.1.1
Factor out of .
Step 4.1.2
Rewrite as plus
Step 4.1.3
Apply the distributive property.
Step 4.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 4.2.1
Group the first two terms and the last two terms.
Step 4.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3
Factor the polynomial by factoring out the greatest common factor, .
Step 5
Factor by grouping.
Tap for more steps...
Step 5.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 5.1.1
Factor out of .
Step 5.1.2
Rewrite as plus
Step 5.1.3
Apply the distributive property.
Step 5.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 5.2.1
Group the first two terms and the last two terms.
Step 5.2.2
Factor out the greatest common factor (GCF) from each group.
Step 5.3
Factor the polynomial by factoring out the greatest common factor, .
Step 6
Cancel the common factor of .
Tap for more steps...
Step 6.1
Factor out of .
Step 6.2
Factor out of .
Step 6.3
Cancel the common factor.
Step 6.4
Rewrite the expression.
Step 7
Multiply by .
Step 8
Raise to the power of .
Step 9
Raise to the power of .
Step 10
Use the power rule to combine exponents.
Step 11
Add and .
Step 12
Cancel the common factor of .
Tap for more steps...
Step 12.1
Cancel the common factor.
Step 12.2
Rewrite the expression.