Enter a problem...
Basic Math Examples
8b+243a+12÷ab-4b+3a-12a2-8a+16
Step 1
To divide by a fraction, multiply by its reciprocal.
8b+243a+12⋅a2-8a+16ab-4b+3a-12
Step 2
Step 2.1
Factor 8 out of 8b+24.
Step 2.1.1
Factor 8 out of 8b.
8(b)+243a+12⋅a2-8a+16ab-4b+3a-12
Step 2.1.2
Factor 8 out of 24.
8b+8⋅33a+12⋅a2-8a+16ab-4b+3a-12
Step 2.1.3
Factor 8 out of 8b+8⋅3.
8(b+3)3a+12⋅a2-8a+16ab-4b+3a-12
8(b+3)3a+12⋅a2-8a+16ab-4b+3a-12
Step 2.2
Factor 3 out of 3a+12.
Step 2.2.1
Factor 3 out of 3a.
8(b+3)3(a)+12⋅a2-8a+16ab-4b+3a-12
Step 2.2.2
Factor 3 out of 12.
8(b+3)3a+3⋅4⋅a2-8a+16ab-4b+3a-12
Step 2.2.3
Factor 3 out of 3a+3⋅4.
8(b+3)3(a+4)⋅a2-8a+16ab-4b+3a-12
8(b+3)3(a+4)⋅a2-8a+16ab-4b+3a-12
8(b+3)3(a+4)⋅a2-8a+16ab-4b+3a-12
Step 3
Step 3.1
Rewrite 16 as 42.
8(b+3)3(a+4)⋅a2-8a+42ab-4b+3a-12
Step 3.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
8a=2⋅a⋅4
Step 3.3
Rewrite the polynomial.
8(b+3)3(a+4)⋅a2-2⋅a⋅4+42ab-4b+3a-12
Step 3.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=a and b=4.
8(b+3)3(a+4)⋅(a-4)2ab-4b+3a-12
8(b+3)3(a+4)⋅(a-4)2ab-4b+3a-12
Step 4
Step 4.1
Factor out the greatest common factor from each group.
Step 4.1.1
Group the first two terms and the last two terms.
8(b+3)3(a+4)⋅(a-4)2(ab-4b)+3a-12
Step 4.1.2
Factor out the greatest common factor (GCF) from each group.
8(b+3)3(a+4)⋅(a-4)2b(a-4)+3(a-4)
8(b+3)3(a+4)⋅(a-4)2b(a-4)+3(a-4)
Step 4.2
Factor the polynomial by factoring out the greatest common factor, a-4.
8(b+3)3(a+4)⋅(a-4)2(a-4)(b+3)
8(b+3)3(a+4)⋅(a-4)2(a-4)(b+3)
Step 5
Step 5.1
Combine.
8(b+3)(a-4)23(a+4)((a-4)(b+3))
Step 5.2
Cancel the common factor of b+3.
Step 5.2.1
Cancel the common factor.
8(b+3)(a-4)23(a+4)((a-4)(b+3))
Step 5.2.2
Rewrite the expression.
8(a-4)23(a+4)(a-4)
8(a-4)23(a+4)(a-4)
Step 5.3
Cancel the common factor of (a-4)2 and a-4.
Step 5.3.1
Factor a-4 out of 8(a-4)2.
(a-4)(8(a-4))3(a+4)(a-4)
Step 5.3.2
Cancel the common factors.
Step 5.3.2.1
Factor a-4 out of 3(a+4)(a-4).
(a-4)(8(a-4))(a-4)(3(a+4))
Step 5.3.2.2
Cancel the common factor.
(a-4)(8(a-4))(a-4)(3(a+4))
Step 5.3.2.3
Rewrite the expression.
8(a-4)3(a+4)
8(a-4)3(a+4)
8(a-4)3(a+4)
8(a-4)3(a+4)