Enter a problem...
Basic Math Examples
5√24√3-25√24√3−2
Step 1
Multiply 5√24√3-25√24√3−2 by 4√3+24√3+24√3+24√3+2.
5√24√3-2⋅4√3+24√3+25√24√3−2⋅4√3+24√3+2
Step 2
Multiply 5√24√3-25√24√3−2 by 4√3+24√3+24√3+24√3+2.
5√2(4√3+2)(4√3-2)(4√3+2)5√2(4√3+2)(4√3−2)(4√3+2)
Step 3
Expand the denominator using the FOIL method.
5√2(4√3+2)16√32+8√3-8√3-45√2(4√3+2)16√32+8√3−8√3−4
Step 4
Simplify.
5√2(4√3+2)445√2(4√3+2)44
Step 5
Step 5.1
Factor 22 out of 5√2(4√3+2)5√2(4√3+2).
2(5√2(2√3+1))442(5√2(2√3+1))44
Step 5.2
Cancel the common factors.
Step 5.2.1
Factor 22 out of 4444.
2(5√2(2√3+1))2(22)2(5√2(2√3+1))2(22)
Step 5.2.2
Cancel the common factor.
2(5√2(2√3+1))2⋅22
Step 5.2.3
Rewrite the expression.
5√2(2√3+1)22
5√2(2√3+1)22
5√2(2√3+1)22
Step 6
Group 2√3+1 and √2 together.
5((2√3+1)√2)22
Step 7
Apply the distributive property.
5(2√3√2+1√2)22
Step 8
Step 8.1
Combine using the product rule for radicals.
5(2√2⋅3+1√2)22
Step 8.2
Multiply 2 by 3.
5(2√6+1√2)22
5(2√6+1√2)22
Step 9
Multiply √2 by 1.
5(2√6+√2)22
Step 10
The result can be shown in multiple forms.
Exact Form:
5(2√6+√2)22
Decimal Form:
1.43481660…