Enter a problem...
Basic Math Examples
5rr2+2r-35-rr2-495rr2+2r−35−rr2−49
Step 1
Step 1.1
Factor r2+2r-35 using the AC method.
Step 1.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -35 and whose sum is 2.
-5,7
Step 1.1.2
Write the factored form using these integers.
5r(r-5)(r+7)-rr2-49
5r(r-5)(r+7)-rr2-49
Step 1.2
Simplify the denominator.
Step 1.2.1
Rewrite 49 as 72.
5r(r-5)(r+7)-rr2-72
Step 1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=r and b=7.
5r(r-5)(r+7)-r(r+7)(r-7)
5r(r-5)(r+7)-r(r+7)(r-7)
5r(r-5)(r+7)-r(r+7)(r-7)
Step 2
To write 5r(r-5)(r+7) as a fraction with a common denominator, multiply by r-7r-7.
5r(r-5)(r+7)⋅r-7r-7-r(r+7)(r-7)
Step 3
To write -r(r+7)(r-7) as a fraction with a common denominator, multiply by r-5r-5.
5r(r-5)(r+7)⋅r-7r-7-r(r+7)(r-7)⋅r-5r-5
Step 4
Step 4.1
Multiply 5r(r-5)(r+7) by r-7r-7.
5r(r-7)(r-5)(r+7)(r-7)-r(r+7)(r-7)⋅r-5r-5
Step 4.2
Multiply r(r+7)(r-7) by r-5r-5.
5r(r-7)(r-5)(r+7)(r-7)-r(r-5)(r+7)(r-7)(r-5)
Step 4.3
Reorder the factors of (r-5)(r+7)(r-7).
5r(r-7)(r+7)(r-5)(r-7)-r(r-5)(r+7)(r-7)(r-5)
Step 4.4
Reorder the factors of (r+7)(r-7)(r-5).
5r(r-7)(r+7)(r-5)(r-7)-r(r-5)(r+7)(r-5)(r-7)
5r(r-7)(r+7)(r-5)(r-7)-r(r-5)(r+7)(r-5)(r-7)
Step 5
Combine the numerators over the common denominator.
5r(r-7)-r(r-5)(r+7)(r-5)(r-7)
Step 6
Step 6.1
Factor r out of 5r(r-7)-r(r-5).
Step 6.1.1
Factor r out of 5r(r-7).
r(5(r-7))-r(r-5)(r+7)(r-5)(r-7)
Step 6.1.2
Factor r out of -r(r-5).
r(5(r-7))+r(-(r-5))(r+7)(r-5)(r-7)
Step 6.1.3
Factor r out of r(5(r-7))+r(-(r-5)).
r(5(r-7)-(r-5))(r+7)(r-5)(r-7)
r(5(r-7)-(r-5))(r+7)(r-5)(r-7)
Step 6.2
Apply the distributive property.
r(5r+5⋅-7-(r-5))(r+7)(r-5)(r-7)
Step 6.3
Multiply 5 by -7.
r(5r-35-(r-5))(r+7)(r-5)(r-7)
Step 6.4
Apply the distributive property.
r(5r-35-r--5)(r+7)(r-5)(r-7)
Step 6.5
Multiply -1 by -5.
r(5r-35-r+5)(r+7)(r-5)(r-7)
Step 6.6
Subtract r from 5r.
r(4r-35+5)(r+7)(r-5)(r-7)
Step 6.7
Add -35 and 5.
r(4r-30)(r+7)(r-5)(r-7)
Step 6.8
Factor 2 out of 4r-30.
Step 6.8.1
Factor 2 out of 4r.
r(2(2r)-30)(r+7)(r-5)(r-7)
Step 6.8.2
Factor 2 out of -30.
r(2(2r)+2(-15))(r+7)(r-5)(r-7)
Step 6.8.3
Factor 2 out of 2(2r)+2(-15).
r(2(2r-15))(r+7)(r-5)(r-7)
r⋅2(2r-15)(r+7)(r-5)(r-7)
r⋅2(2r-15)(r+7)(r-5)(r-7)
Step 7
Move 2 to the left of r.
2r(2r-15)(r+7)(r-5)(r-7)