Enter a problem...
Basic Math Examples
3t-2-22t-33t−2−22t−3
Step 1
To write 3t-23t−2 as a fraction with a common denominator, multiply by 2t-32t-32t−32t−3.
3t-2⋅2t-32t-3-22t-33t−2⋅2t−32t−3−22t−3
Step 2
To write -22t-3−22t−3 as a fraction with a common denominator, multiply by t-2t-2t−2t−2.
3t-2⋅2t-32t-3-22t-3⋅t-2t-23t−2⋅2t−32t−3−22t−3⋅t−2t−2
Step 3
Step 3.1
Multiply 3t-23t−2 by 2t-32t-32t−32t−3.
3(2t-3)(t-2)(2t-3)-22t-3⋅t-2t-23(2t−3)(t−2)(2t−3)−22t−3⋅t−2t−2
Step 3.2
Multiply 22t-322t−3 by t-2t-2t−2t−2.
3(2t-3)(t-2)(2t-3)-2(t-2)(2t-3)(t-2)3(2t−3)(t−2)(2t−3)−2(t−2)(2t−3)(t−2)
Step 3.3
Reorder the factors of (t-2)(2t-3)(t−2)(2t−3).
3(2t-3)(2t-3)(t-2)-2(t-2)(2t-3)(t-2)3(2t−3)(2t−3)(t−2)−2(t−2)(2t−3)(t−2)
3(2t-3)(2t-3)(t-2)-2(t-2)(2t-3)(t-2)3(2t−3)(2t−3)(t−2)−2(t−2)(2t−3)(t−2)
Step 4
Combine the numerators over the common denominator.
3(2t-3)-2(t-2)(2t-3)(t-2)3(2t−3)−2(t−2)(2t−3)(t−2)
Step 5
Step 5.1
Apply the distributive property.
3(2t)+3⋅-3-2(t-2)(2t-3)(t-2)3(2t)+3⋅−3−2(t−2)(2t−3)(t−2)
Step 5.2
Multiply 2 by 3.
6t+3⋅-3-2(t-2)(2t-3)(t-2)
Step 5.3
Multiply 3 by -3.
6t-9-2(t-2)(2t-3)(t-2)
Step 5.4
Apply the distributive property.
6t-9-2t-2⋅-2(2t-3)(t-2)
Step 5.5
Multiply -2 by -2.
6t-9-2t+4(2t-3)(t-2)
Step 5.6
Subtract 2t from 6t.
4t-9+4(2t-3)(t-2)
Step 5.7
Add -9 and 4.
4t-5(2t-3)(t-2)
4t-5(2t-3)(t-2)