Enter a problem...
Basic Math Examples
-2a5b⋅3ab5b÷5ab9b−2a5b⋅3ab5b÷5ab9b
Step 1
To divide by a fraction, multiply by its reciprocal.
-2a5b⋅3ab5b9b5ab−2a5b⋅3ab5b9b5ab
Step 2
Step 2.1
Factor bb out of 5b5b.
-2ab⋅5⋅3ab5b9b5ab−2ab⋅5⋅3ab5b9b5ab
Step 2.2
Factor bb out of 3ab3ab.
-2ab⋅5⋅b(3a)5b9b5ab−2ab⋅5⋅b(3a)5b9b5ab
Step 2.3
Cancel the common factor.
-2ab⋅5⋅b(3a)5b9b5ab
Step 2.4
Rewrite the expression.
-2a5⋅3a5b9b5ab
-2a5⋅3a5b9b5ab
Step 3
Multiply -2a5 by 3a5b.
-2a(3a)5(5b)⋅9b5ab
Step 4
Multiply 3 by -2.
-6a⋅a5(5b)⋅9b5ab
Step 5
Raise a to the power of 1.
-6(a1a)5(5b)⋅9b5ab
Step 6
Raise a to the power of 1.
-6(a1a1)5(5b)⋅9b5ab
Step 7
Use the power rule aman=am+n to combine exponents.
-6a1+15(5b)⋅9b5ab
Step 8
Step 8.1
Add 1 and 1.
-6a25(5b)⋅9b5ab
Step 8.2
Multiply 5 by 5.
-6a225b⋅9b5ab
-6a225b⋅9b5ab
Step 9
Combine.
-6a2(9b)25b(5ab)
Step 10
Step 10.1
Move b.
-6a2(9b)25(b⋅b)(5a)
Step 10.2
Multiply b by b.
-6a2(9b)25b2(5a)
-6a2(9b)25b2(5a)
Step 11
Step 11.1
Factor a out of -6a2(9b).
a(-6a(9b))25b2(5a)
Step 11.2
Cancel the common factors.
Step 11.2.1
Factor a out of 25b2(5a).
a(-6a(9b))a(25b2⋅(5))
Step 11.2.2
Cancel the common factor.
a(-6a(9b))a(25b2⋅(5))
Step 11.2.3
Rewrite the expression.
-6a(9b)25b2⋅(5)
-6a(9b)25b2⋅(5)
-6a(9b)25b2⋅(5)
Step 12
Step 12.1
Factor b out of -6a(9b).
b(-6a⋅(9))25b2⋅(5)
Step 12.2
Cancel the common factors.
Step 12.2.1
Factor b out of 25b2⋅(5).
b(-6a⋅(9))b(25b⋅5)
Step 12.2.2
Cancel the common factor.
b(-6a⋅(9))b(25b⋅5)
Step 12.2.3
Rewrite the expression.
-6a⋅(9)25b⋅5
-6a⋅(9)25b⋅5
-6a⋅(9)25b⋅5
Step 13
Step 13.1
Multiply 9 by -6.
-54a25b⋅5
Step 13.2
Multiply 5 by 25.
-54a125b
Step 13.3
Move the negative in front of the fraction.
-54a125b
-54a125b