Enter a problem...
Basic Math Examples
(-3-2(-4+h)2)-(-3-2(-4)2)h
Step 1
Step 1.1
Rewrite (-4+h)2 as (-4+h)(-4+h).
-3-2((-4+h)(-4+h))-(-3-2(-4)2)h
Step 1.2
Expand (-4+h)(-4+h) using the FOIL Method.
Step 1.2.1
Apply the distributive property.
-3-2(-4(-4+h)+h(-4+h))-(-3-2(-4)2)h
Step 1.2.2
Apply the distributive property.
-3-2(-4⋅-4-4h+h(-4+h))-(-3-2(-4)2)h
Step 1.2.3
Apply the distributive property.
-3-2(-4⋅-4-4h+h⋅-4+h⋅h)-(-3-2(-4)2)h
-3-2(-4⋅-4-4h+h⋅-4+h⋅h)-(-3-2(-4)2)h
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Multiply -4 by -4.
-3-2(16-4h+h⋅-4+h⋅h)-(-3-2(-4)2)h
Step 1.3.1.2
Move -4 to the left of h.
-3-2(16-4h-4⋅h+h⋅h)-(-3-2(-4)2)h
Step 1.3.1.3
Multiply h by h.
-3-2(16-4h-4h+h2)-(-3-2(-4)2)h
-3-2(16-4h-4h+h2)-(-3-2(-4)2)h
Step 1.3.2
Subtract 4h from -4h.
-3-2(16-8h+h2)-(-3-2(-4)2)h
-3-2(16-8h+h2)-(-3-2(-4)2)h
Step 1.4
Apply the distributive property.
-3-2⋅16-2(-8h)-2h2-(-3-2(-4)2)h
Step 1.5
Simplify.
Step 1.5.1
Multiply -2 by 16.
-3-32-2(-8h)-2h2-(-3-2(-4)2)h
Step 1.5.2
Multiply -8 by -2.
-3-32+16h-2h2-(-3-2(-4)2)h
-3-32+16h-2h2-(-3-2(-4)2)h
Step 1.6
Simplify each term.
Step 1.6.1
Raise -4 to the power of 2.
-3-32+16h-2h2-(-3-2⋅16)h
Step 1.6.2
Multiply -2 by 16.
-3-32+16h-2h2-(-3-32)h
-3-32+16h-2h2-(-3-32)h
Step 1.7
Subtract 32 from -3.
-3-32+16h-2h2--35h
Step 1.8
Multiply -1 by -35.
-3-32+16h-2h2+35h
Step 1.9
Subtract 32 from -3.
-35+16h-2h2+35h
Step 1.10
Add -35 and 35.
16h-2h2+0h
Step 1.11
Add 16h-2h2 and 0.
16h-2h2h
Step 1.12
Factor 2h out of 16h-2h2.
Step 1.12.1
Factor 2h out of 16h.
2h(8)-2h2h
Step 1.12.2
Factor 2h out of -2h2.
2h(8)+2h(-h)h
Step 1.12.3
Factor 2h out of 2h(8)+2h(-h).
2h(8-h)h
2h(8-h)h
2h(8-h)h
Step 2
Step 2.1
Cancel the common factor of h.
Step 2.1.1
Cancel the common factor.
2h(8-h)h
Step 2.1.2
Divide 2(8-h) by 1.
2(8-h)
2(8-h)
Step 2.2
Apply the distributive property.
2⋅8+2(-h)
Step 2.3
Multiply.
Step 2.3.1
Multiply 2 by 8.
16+2(-h)
Step 2.3.2
Multiply -1 by 2.
16-2h
16-2h
16-2h