Enter a problem...
Basic Math Examples
313÷235313÷235
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
(3+13)÷235(3+13)÷235
Step 1.2
Add 33 and 1313.
Step 1.2.1
To write 33 as a fraction with a common denominator, multiply by 3333.
(3⋅33+13)÷235(3⋅33+13)÷235
Step 1.2.2
Combine 33 and 3333.
(3⋅33+13)÷235(3⋅33+13)÷235
Step 1.2.3
Combine the numerators over the common denominator.
3⋅3+13÷2353⋅3+13÷235
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 33 by 33.
9+13÷2359+13÷235
Step 1.2.4.2
Add 99 and 11.
103÷235103÷235
103÷235103÷235
103÷235103÷235
103÷235103÷235
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
103÷(2+35)103÷(2+35)
Step 2.2
Add 22 and 3535.
Step 2.2.1
To write 22 as a fraction with a common denominator, multiply by 5555.
103÷(2⋅55+35)103÷(2⋅55+35)
Step 2.2.2
Combine 22 and 5555.
103÷(2⋅55+35)103÷(2⋅55+35)
Step 2.2.3
Combine the numerators over the common denominator.
103÷2⋅5+35103÷2⋅5+35
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 22 by 55.
103÷10+35103÷10+35
Step 2.2.4.2
Add 1010 and 33.
103÷135103÷135
103÷135103÷135
103÷135103÷135
103÷135103÷135
Step 3
To divide by a fraction, multiply by its reciprocal.
103⋅513103⋅513
Step 4
Step 4.1
Multiply 103103 by 513513.
10⋅53⋅1310⋅53⋅13
Step 4.2
Multiply 1010 by 55.
503⋅13503⋅13
Step 4.3
Multiply 33 by 1313.
50395039
50395039
Step 5
The result can be shown in multiple forms.
Exact Form:
50395039
Decimal Form:
1.‾2820511.¯¯¯¯¯¯¯¯¯¯¯¯282051
Mixed Number Form:
1113911139