Basic Math Examples

Simplify (2(w^2+w-6))/(w^2+4w-5)*(w^3-3w^2+2w)/(4w^2-6w)
2(w2+w-6)w2+4w-5w3-3w2+2w4w2-6w2(w2+w6)w2+4w5w33w2+2w4w26w
Step 1
Factor w2+w-6 using the AC method.
Tap for more steps...
Step 1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -6 and whose sum is 1.
-2,3
Step 1.2
Write the factored form using these integers.
2((w-2)(w+3))w2+4w-5w3-3w2+2w4w2-6w
2(w-2)(w+3)w2+4w-5w3-3w2+2w4w2-6w
Step 2
Factor w2+4w-5 using the AC method.
Tap for more steps...
Step 2.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -5 and whose sum is 4.
-1,5
Step 2.2
Write the factored form using these integers.
2(w-2)(w+3)(w-1)(w+5)w3-3w2+2w4w2-6w
2(w-2)(w+3)(w-1)(w+5)w3-3w2+2w4w2-6w
Step 3
Simplify the numerator.
Tap for more steps...
Step 3.1
Factor w out of w3-3w2+2w.
Tap for more steps...
Step 3.1.1
Factor w out of w3.
2(w-2)(w+3)(w-1)(w+5)ww2-3w2+2w4w2-6w
Step 3.1.2
Factor w out of -3w2.
2(w-2)(w+3)(w-1)(w+5)ww2+w(-3w)+2w4w2-6w
Step 3.1.3
Factor w out of 2w.
2(w-2)(w+3)(w-1)(w+5)ww2+w(-3w)+w24w2-6w
Step 3.1.4
Factor w out of ww2+w(-3w).
2(w-2)(w+3)(w-1)(w+5)w(w2-3w)+w24w2-6w
Step 3.1.5
Factor w out of w(w2-3w)+w2.
2(w-2)(w+3)(w-1)(w+5)w(w2-3w+2)4w2-6w
2(w-2)(w+3)(w-1)(w+5)w(w2-3w+2)4w2-6w
Step 3.2
Factor w2-3w+2 using the AC method.
Tap for more steps...
Step 3.2.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 2 and whose sum is -3.
-2,-1
Step 3.2.2
Write the factored form using these integers.
2(w-2)(w+3)(w-1)(w+5)w((w-2)(w-1))4w2-6w
2(w-2)(w+3)(w-1)(w+5)w(w-2)(w-1)4w2-6w
2(w-2)(w+3)(w-1)(w+5)w(w-2)(w-1)4w2-6w
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Factor 2w out of 4w2-6w.
Tap for more steps...
Step 4.1.1
Factor 2w out of 4w2.
2(w-2)(w+3)(w-1)(w+5)w(w-2)(w-1)2w(2w)-6w
Step 4.1.2
Factor 2w out of -6w.
2(w-2)(w+3)(w-1)(w+5)w(w-2)(w-1)2w(2w)+2w(-3)
Step 4.1.3
Factor 2w out of 2w(2w)+2w(-3).
2(w-2)(w+3)(w-1)(w+5)w(w-2)(w-1)2w(2w-3)
2(w-2)(w+3)(w-1)(w+5)w(w-2)(w-1)2w(2w-3)
Step 4.2
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.1
Factor 2 out of 2(w-2)(w+3).
2((w-2)(w+3))(w-1)(w+5)w(w-2)(w-1)2w(2w-3)
Step 4.2.2
Factor 2 out of 2w(2w-3).
2((w-2)(w+3))(w-1)(w+5)w(w-2)(w-1)2(w(2w-3))
Step 4.2.3
Cancel the common factor.
2((w-2)(w+3))(w-1)(w+5)w(w-2)(w-1)2(w(2w-3))
Step 4.2.4
Rewrite the expression.
(w-2)(w+3)(w-1)(w+5)w(w-2)(w-1)w(2w-3)
(w-2)(w+3)(w-1)(w+5)w(w-2)(w-1)w(2w-3)
Step 4.3
Cancel the common factor of w-1.
Tap for more steps...
Step 4.3.1
Factor w-1 out of w(w-2)(w-1).
(w-2)(w+3)(w-1)(w+5)(w-1)(w(w-2))w(2w-3)
Step 4.3.2
Cancel the common factor.
(w-2)(w+3)(w-1)(w+5)(w-1)(w(w-2))w(2w-3)
Step 4.3.3
Rewrite the expression.
(w-2)(w+3)w+5w(w-2)w(2w-3)
(w-2)(w+3)w+5w(w-2)w(2w-3)
Step 4.4
Multiply (w-2)(w+3)w+5 by w(w-2)w(2w-3).
(w-2)(w+3)(w(w-2))(w+5)(w(2w-3))
(w-2)(w+3)(w(w-2))(w+5)(w(2w-3))
Step 5
Raise w-2 to the power of 1.
(w+3)(w((w-2)1(w-2)))(w+5)(w(2w-3))
Step 6
Raise w-2 to the power of 1.
(w+3)(w((w-2)1(w-2)1))(w+5)(w(2w-3))
Step 7
Use the power rule aman=am+n to combine exponents.
(w+3)(w(w-2)1+1)(w+5)(w(2w-3))
Step 8
Add 1 and 1.
(w+3)(w(w-2)2)(w+5)(w(2w-3))
Step 9
Cancel the common factor of w.
Tap for more steps...
Step 9.1
Cancel the common factor.
(w+3)(w(w-2)2)(w+5)(w(2w-3))
Step 9.2
Rewrite the expression.
(w+3)((w-2)2)(w+5)(2w-3)
(w+3)((w-2)2)(w+5)(2w-3)
 [x2  12  π  xdx ]