Basic Math Examples

Simplify -2(-2a^9b^4)^3(3a^9b)^2
-2(-2a9b4)3(3a9b)22(2a9b4)3(3a9b)2
Step 1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 1.1
Apply the product rule to -2a9b42a9b4.
-2((-2a9)3(b4)3)(3a9b)22((2a9)3(b4)3)(3a9b)2
Step 1.2
Apply the product rule to -2a92a9.
-2((-2)3(a9)3(b4)3)(3a9b)22((2)3(a9)3(b4)3)(3a9b)2
-2((-2)3(a9)3(b4)3)(3a9b)22((2)3(a9)3(b4)3)(3a9b)2
Step 2
Multiply -22 by (-2)3(2)3 by adding the exponents.
Tap for more steps...
Step 2.1
Move (-2)3(2)3.
(-2)3-2((a9)3(b4)3)(3a9b)2(2)32((a9)3(b4)3)(3a9b)2
Step 2.2
Multiply (-2)3(2)3 by -22.
Tap for more steps...
Step 2.2.1
Raise -22 to the power of 11.
(-2)3(-2)1((a9)3(b4)3)(3a9b)2(2)3(2)1((a9)3(b4)3)(3a9b)2
Step 2.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
(-2)3+1((a9)3(b4)3)(3a9b)2(2)3+1((a9)3(b4)3)(3a9b)2
(-2)3+1((a9)3(b4)3)(3a9b)2(2)3+1((a9)3(b4)3)(3a9b)2
Step 2.3
Add 33 and 11.
(-2)4((a9)3(b4)3)(3a9b)2(2)4((a9)3(b4)3)(3a9b)2
(-2)4((a9)3(b4)3)(3a9b)2(2)4((a9)3(b4)3)(3a9b)2
Step 3
Raise -22 to the power of 44.
16((a9)3(b4)3)(3a9b)216((a9)3(b4)3)(3a9b)2
Step 4
Multiply the exponents in (a9)3(a9)3.
Tap for more steps...
Step 4.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
16(a93(b4)3)(3a9b)216(a93(b4)3)(3a9b)2
Step 4.2
Multiply 99 by 33.
16(a27(b4)3)(3a9b)216(a27(b4)3)(3a9b)2
16(a27(b4)3)(3a9b)216(a27(b4)3)(3a9b)2
Step 5
Multiply the exponents in (b4)3(b4)3.
Tap for more steps...
Step 5.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
16(a27b43)(3a9b)216(a27b43)(3a9b)2
Step 5.2
Multiply 44 by 33.
16(a27b12)(3a9b)216(a27b12)(3a9b)2
16(a27b12)(3a9b)216(a27b12)(3a9b)2
Step 6
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 6.1
Apply the product rule to 3a9b3a9b.
16a27b12((3a9)2b2)16a27b12((3a9)2b2)
Step 6.2
Apply the product rule to 3a93a9.
16a27b12(32(a9)2b2)16a27b12(32(a9)2b2)
16a27b12(32(a9)2b2)16a27b12(32(a9)2b2)
Step 7
Multiply b12b12 by b2b2 by adding the exponents.
Tap for more steps...
Step 7.1
Move b2b2.
16a27(b2b12)(32(a9)2)16a27(b2b12)(32(a9)2)
Step 7.2
Use the power rule aman=am+naman=am+n to combine exponents.
16a27b2+12(32(a9)2)16a27b2+12(32(a9)2)
Step 7.3
Add 22 and 1212.
16a27b14(32(a9)2)16a27b14(32(a9)2)
16a27b14(32(a9)2)16a27b14(32(a9)2)
Step 8
Raise 33 to the power of 22.
16a27b14(9(a9)2)16a27b14(9(a9)2)
Step 9
Multiply the exponents in (a9)2(a9)2.
Tap for more steps...
Step 9.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
16a27b14(9a92)16a27b14(9a92)
Step 9.2
Multiply 99 by 2.
16a27b14(9a18)
16a27b14(9a18)
Step 10
Multiply a27 by a18 by adding the exponents.
Tap for more steps...
Step 10.1
Move a18.
16(a18a27)b149
Step 10.2
Use the power rule aman=am+n to combine exponents.
16a18+27b149
Step 10.3
Add 18 and 27.
16a45b149
16a45b149
Step 11
Multiply 9 by 16.
144a45b14
 [x2  12  π  xdx ]