Basic Math Examples

Simplify 2((m^2n)÷m)^6*(3^(1/2)n^3)^2
2(m2n÷m)6(312n3)2
Step 1
Rewrite the division as a fraction.
2(m2nm)6(312n3)2
Step 2
Cancel the common factor of m2 and m.
Tap for more steps...
Step 2.1
Factor m out of m2n.
2(m(mn)m)6(312n3)2
Step 2.2
Cancel the common factors.
Tap for more steps...
Step 2.2.1
Raise m to the power of 1.
2(m(mn)m1)6(312n3)2
Step 2.2.2
Factor m out of m1.
2(m(mn)m1)6(312n3)2
Step 2.2.3
Cancel the common factor.
2(m(mn)m1)6(312n3)2
Step 2.2.4
Rewrite the expression.
2(mn1)6(312n3)2
Step 2.2.5
Divide mn by 1.
2(mn)6(312n3)2
2(mn)6(312n3)2
2(mn)6(312n3)2
Step 3
Apply basic rules of exponents.
Tap for more steps...
Step 3.1
Apply the product rule to mn.
2(m6n6)(312n3)2
Step 3.2
Apply the product rule to 312n3.
2m6n6((312)2(n3)2)
Step 3.3
Multiply the exponents in (312)2.
Tap for more steps...
Step 3.3.1
Apply the power rule and multiply exponents, (am)n=amn.
2m6n6(3122(n3)2)
Step 3.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor.
2m6n6(3122(n3)2)
Step 3.3.2.2
Rewrite the expression.
2m6n6(31(n3)2)
2m6n6(31(n3)2)
2m6n6(31(n3)2)
2m6n6(31(n3)2)
Step 4
Evaluate the exponent.
2m6n6(3(n3)2)
Step 5
Multiply the exponents in (n3)2.
Tap for more steps...
Step 5.1
Apply the power rule and multiply exponents, (am)n=amn.
2m6n6(3n32)
Step 5.2
Multiply 3 by 2.
2m6n6(3n6)
2m6n6(3n6)
Step 6
Multiply n6 by n6 by adding the exponents.
Tap for more steps...
Step 6.1
Move n6.
2m6(n6n6)3
Step 6.2
Use the power rule aman=am+n to combine exponents.
2m6n6+63
Step 6.3
Add 6 and 6.
2m6n123
2m6n123
Step 7
Multiply 3 by 2.
6m6n12
 [x2  12  π  xdx ]