Enter a problem...
Basic Math Examples
2(m2n÷m)6⋅(312n3)2
Step 1
Rewrite the division as a fraction.
2(m2nm)6⋅(312n3)2
Step 2
Step 2.1
Factor m out of m2n.
2(m(mn)m)6⋅(312n3)2
Step 2.2
Cancel the common factors.
Step 2.2.1
Raise m to the power of 1.
2(m(mn)m1)6⋅(312n3)2
Step 2.2.2
Factor m out of m1.
2(m(mn)m⋅1)6⋅(312n3)2
Step 2.2.3
Cancel the common factor.
2(m(mn)m⋅1)6⋅(312n3)2
Step 2.2.4
Rewrite the expression.
2(mn1)6⋅(312n3)2
Step 2.2.5
Divide mn by 1.
2(mn)6⋅(312n3)2
2(mn)6⋅(312n3)2
2(mn)6⋅(312n3)2
Step 3
Step 3.1
Apply the product rule to mn.
2(m6n6)⋅(312n3)2
Step 3.2
Apply the product rule to 312n3.
2m6n6⋅((312)2(n3)2)
Step 3.3
Multiply the exponents in (312)2.
Step 3.3.1
Apply the power rule and multiply exponents, (am)n=amn.
2m6n6⋅(312⋅2(n3)2)
Step 3.3.2
Cancel the common factor of 2.
Step 3.3.2.1
Cancel the common factor.
2m6n6⋅(312⋅2(n3)2)
Step 3.3.2.2
Rewrite the expression.
2m6n6⋅(31(n3)2)
2m6n6⋅(31(n3)2)
2m6n6⋅(31(n3)2)
2m6n6⋅(31(n3)2)
Step 4
Evaluate the exponent.
2m6n6⋅(3(n3)2)
Step 5
Step 5.1
Apply the power rule and multiply exponents, (am)n=amn.
2m6n6⋅(3n3⋅2)
Step 5.2
Multiply 3 by 2.
2m6n6⋅(3n6)
2m6n6⋅(3n6)
Step 6
Step 6.1
Move n6.
2m6(n6n6)⋅3
Step 6.2
Use the power rule aman=am+n to combine exponents.
2m6n6+6⋅3
Step 6.3
Add 6 and 6.
2m6n12⋅3
2m6n12⋅3
Step 7
Multiply 3 by 2.
6m6n12