Basic Math Examples

Simplify (x^2-7x+6)/(5x^2-5)
x2-7x+65x2-5x27x+65x25
Step 1
Factor x2-7x+6x27x+6 using the AC method.
Tap for more steps...
Step 1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 66 and whose sum is -77.
-6,-16,1
Step 1.2
Write the factored form using these integers.
(x-6)(x-1)5x2-5(x6)(x1)5x25
(x-6)(x-1)5x2-5(x6)(x1)5x25
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Factor 55 out of 5x2-55x25.
Tap for more steps...
Step 2.1.1
Factor 55 out of 5x25x2.
(x-6)(x-1)5(x2)-5(x6)(x1)5(x2)5
Step 2.1.2
Factor 55 out of -55.
(x-6)(x-1)5(x2)+5(-1)(x6)(x1)5(x2)+5(1)
Step 2.1.3
Factor 55 out of 5(x2)+5(-1)5(x2)+5(1).
(x-6)(x-1)5(x2-1)(x6)(x1)5(x21)
(x-6)(x-1)5(x2-1)(x6)(x1)5(x21)
Step 2.2
Rewrite 11 as 1212.
(x-6)(x-1)5(x2-12)(x6)(x1)5(x212)
Step 2.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=xa=x and b=1b=1.
(x-6)(x-1)5(x+1)(x-1)(x6)(x1)5(x+1)(x1)
(x-6)(x-1)5(x+1)(x-1)(x6)(x1)5(x+1)(x1)
Step 3
Cancel the common factor of x-1x1.
Tap for more steps...
Step 3.1
Cancel the common factor.
(x-6)(x-1)5(x+1)(x-1)
Step 3.2
Rewrite the expression.
x-65(x+1)
x-65(x+1)
 [x2  12  π  xdx ]