Enter a problem...
Basic Math Examples
215⋅(-2215)÷3110215⋅(−2215)÷3110
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
(2+15)⋅(-2215)÷3110(2+15)⋅(−2215)÷3110
Step 1.2
Add 22 and 1515.
Step 1.2.1
To write 22 as a fraction with a common denominator, multiply by 5555.
(2⋅55+15)⋅(-2215)÷3110(2⋅55+15)⋅(−2215)÷3110
Step 1.2.2
Combine 22 and 5555.
(2⋅55+15)⋅(-2215)÷3110(2⋅55+15)⋅(−2215)÷3110
Step 1.2.3
Combine the numerators over the common denominator.
2⋅5+15⋅(-2215)÷31102⋅5+15⋅(−2215)÷3110
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 22 by 55.
10+15⋅(-2215)÷311010+15⋅(−2215)÷3110
Step 1.2.4.2
Add 1010 and 11.
115⋅(-2215)÷3110115⋅(−2215)÷3110
115⋅(-2215)÷3110115⋅(−2215)÷3110
115⋅(-2215)÷3110115⋅(−2215)÷3110
115⋅(-2215)÷3110115⋅(−2215)÷3110
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
115⋅(-(2+215))÷3110115⋅(−(2+215))÷3110
Step 2.2
Add 22 and 215215.
Step 2.2.1
To write 22 as a fraction with a common denominator, multiply by 15151515.
115⋅(-(2⋅1515+215))÷3110115⋅(−(2⋅1515+215))÷3110
Step 2.2.2
Combine 22 and 15151515.
115⋅(-(2⋅1515+215))÷3110115⋅(−(2⋅1515+215))÷3110
Step 2.2.3
Combine the numerators over the common denominator.
115⋅(-2⋅15+215)÷3110115⋅(−2⋅15+215)÷3110
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 22 by 1515.
115⋅(-30+215)÷3110115⋅(−30+215)÷3110
Step 2.2.4.2
Add 3030 and 22.
115⋅(-3215)÷3110115⋅(−3215)÷3110
115⋅(-3215)÷3110115⋅(−3215)÷3110
115⋅(-3215)÷3110
115⋅(-3215)÷3110
Step 3
Step 3.1
A mixed number is an addition of its whole and fractional parts.
115⋅(-3215)÷(3+110)
Step 3.2
Add 3 and 110.
Step 3.2.1
To write 3 as a fraction with a common denominator, multiply by 1010.
115⋅(-3215)÷(3⋅1010+110)
Step 3.2.2
Combine 3 and 1010.
115⋅(-3215)÷(3⋅1010+110)
Step 3.2.3
Combine the numerators over the common denominator.
115⋅(-3215)÷3⋅10+110
Step 3.2.4
Simplify the numerator.
Step 3.2.4.1
Multiply 3 by 10.
115⋅(-3215)÷30+110
Step 3.2.4.2
Add 30 and 1.
115⋅(-3215)÷3110
115⋅(-3215)÷3110
115⋅(-3215)÷3110
115⋅(-3215)÷3110
Step 4
To divide by a fraction, multiply by its reciprocal.
115⋅(-3215)1031
Step 5
Step 5.1
Multiply 115 by 3215.
-11⋅325⋅15⋅1031
Step 5.2
Multiply 11 by 32.
-3525⋅15⋅1031
Step 5.3
Multiply 5 by 15.
-35275⋅1031
-35275⋅1031
Step 6
Step 6.1
Move the leading negative in -35275 into the numerator.
-35275⋅1031
Step 6.2
Factor 5 out of 75.
-3525(15)⋅1031
Step 6.3
Factor 5 out of 10.
-3525⋅15⋅5⋅231
Step 6.4
Cancel the common factor.
-3525⋅15⋅5⋅231
Step 6.5
Rewrite the expression.
-35215⋅231
-35215⋅231
Step 7
Multiply -35215 by 231.
-352⋅215⋅31
Step 8
Step 8.1
Multiply -352 by 2.
-70415⋅31
Step 8.2
Multiply 15 by 31.
-704465
Step 8.3
Move the negative in front of the fraction.
-704465
-704465
Step 9
The result can be shown in multiple forms.
Exact Form:
-704465
Decimal Form:
-1.51397849…
Mixed Number Form:
-1239465