Basic Math Examples

Simplify ( square root of 3(cos(315)+isin(315)))/( square root of 6(cos(45)+isin(45)))
3(cos(315)+isin(315))6(cos(45)+isin(45))
Step 1
Combine 3 and 6 into a single radical.
36(cos(315)+isin(315))cos(45)+isin(45)
Step 2
Cancel the common factor of 3 and 6.
Tap for more steps...
Step 2.1
Factor 3 out of 3.
3(1)6(cos(315)+isin(315))cos(45)+isin(45)
Step 2.2
Cancel the common factors.
Tap for more steps...
Step 2.2.1
Factor 3 out of 6.
3132(cos(315)+isin(315))cos(45)+isin(45)
Step 2.2.2
Cancel the common factor.
3132(cos(315)+isin(315))cos(45)+isin(45)
Step 2.2.3
Rewrite the expression.
12(cos(315)+isin(315))cos(45)+isin(45)
12(cos(315)+isin(315))cos(45)+isin(45)
12(cos(315)+isin(315))cos(45)+isin(45)
Step 3
Simplify the numerator.
Tap for more steps...
Step 3.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
12(cos(45)+isin(315))cos(45)+isin(45)
Step 3.2
The exact value of cos(45) is 22.
12(22+isin(315))cos(45)+isin(45)
Step 3.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
12(22+i(-sin(45)))cos(45)+isin(45)
Step 3.4
The exact value of sin(45) is 22.
12(22+i(-22))cos(45)+isin(45)
Step 3.5
Combine i and 22.
12(22-i22)cos(45)+isin(45)
Step 3.6
Rewrite 12 as 12.
12(22-i22)cos(45)+isin(45)
Step 3.7
Any root of 1 is 1.
12(22-i22)cos(45)+isin(45)
Step 3.8
Multiply 12 by 22.
1222(22-i22)cos(45)+isin(45)
Step 3.9
Combine and simplify the denominator.
Tap for more steps...
Step 3.9.1
Multiply 12 by 22.
222(22-i22)cos(45)+isin(45)
Step 3.9.2
Raise 2 to the power of 1.
2212(22-i22)cos(45)+isin(45)
Step 3.9.3
Raise 2 to the power of 1.
22121(22-i22)cos(45)+isin(45)
Step 3.9.4
Use the power rule aman=am+n to combine exponents.
221+1(22-i22)cos(45)+isin(45)
Step 3.9.5
Add 1 and 1.
222(22-i22)cos(45)+isin(45)
Step 3.9.6
Rewrite 22 as 2.
Tap for more steps...
Step 3.9.6.1
Use nax=axn to rewrite 2 as 212.
2(212)2(22-i22)cos(45)+isin(45)
Step 3.9.6.2
Apply the power rule and multiply exponents, (am)n=amn.
22122(22-i22)cos(45)+isin(45)
Step 3.9.6.3
Combine 12 and 2.
2222(22-i22)cos(45)+isin(45)
Step 3.9.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.9.6.4.1
Cancel the common factor.
2222(22-i22)cos(45)+isin(45)
Step 3.9.6.4.2
Rewrite the expression.
221(22-i22)cos(45)+isin(45)
221(22-i22)cos(45)+isin(45)
Step 3.9.6.5
Evaluate the exponent.
22(22-i22)cos(45)+isin(45)
22(22-i22)cos(45)+isin(45)
22(22-i22)cos(45)+isin(45)
Step 3.10
Combine the numerators over the common denominator.
222-i22cos(45)+isin(45)
222-i22cos(45)+isin(45)
Step 4
Simplify the denominator.
Tap for more steps...
Step 4.1
The exact value of cos(45) is 22.
222-i2222+isin(45)
Step 4.2
The exact value of sin(45) is 22.
222-i2222+i22
Step 4.3
Combine i and 22.
222-i2222+i22
Step 4.4
Combine the numerators over the common denominator.
222-i222+i22
222-i222+i22
Step 5
Combine fractions.
Tap for more steps...
Step 5.1
Multiply 22 by 2-i22.
2(2-i2)222+i22
Step 5.2
Multiply 2 by 2.
2(2-i2)42+i22
2(2-i2)42+i22
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
Apply the distributive property.
22+2(-i2)42+i22
Step 6.2
Combine using the product rule for radicals.
22+2(-i2)42+i22
Step 6.3
Multiply 2(-i2).
Tap for more steps...
Step 6.3.1
Raise 2 to the power of 1.
22-i(212)42+i22
Step 6.3.2
Raise 2 to the power of 1.
22-i(2121)42+i22
Step 6.3.3
Use the power rule aman=am+n to combine exponents.
22-i21+142+i22
Step 6.3.4
Add 1 and 1.
22-i2242+i22
22-i2242+i22
Step 6.4
Simplify each term.
Tap for more steps...
Step 6.4.1
Multiply 2 by 2.
4-i2242+i22
Step 6.4.2
Rewrite 4 as 22.
22-i2242+i22
Step 6.4.3
Pull terms out from under the radical, assuming positive real numbers.
2-i2242+i22
Step 6.4.4
Rewrite 22 as 2.
Tap for more steps...
Step 6.4.4.1
Use nax=axn to rewrite 2 as 212.
2-i(212)242+i22
Step 6.4.4.2
Apply the power rule and multiply exponents, (am)n=amn.
2-i212242+i22
Step 6.4.4.3
Combine 12 and 2.
2-i22242+i22
Step 6.4.4.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.4.4.4.1
Cancel the common factor.
2-i22242+i22
Step 6.4.4.4.2
Rewrite the expression.
2-i2142+i22
2-i2142+i22
Step 6.4.4.5
Evaluate the exponent.
2-i242+i22
2-i242+i22
Step 6.4.5
Multiply 2 by -1.
2-2i42+i22
2-2i42+i22
Step 6.5
Cancel the common factor of 2-2i and 4.
Tap for more steps...
Step 6.5.1
Factor 2 out of 2.
2(1)-2i42+i22
Step 6.5.2
Factor 2 out of -2i.
2(1)+2(-i)42+i22
Step 6.5.3
Factor 2 out of 2(1)+2(-i).
2(1-i)42+i22
Step 6.5.4
Cancel the common factors.
Tap for more steps...
Step 6.5.4.1
Factor 2 out of 4.
2(1-i)222+i22
Step 6.5.4.2
Cancel the common factor.
2(1-i)222+i22
Step 6.5.4.3
Rewrite the expression.
1-i22+i22
1-i22+i22
1-i22+i22
1-i22+i22
Step 7
Multiply the numerator by the reciprocal of the denominator.
1-i222+i2
Step 8
Cancel the common factor of 2.
Tap for more steps...
Step 8.1
Cancel the common factor.
1-i222+i2
Step 8.2
Rewrite the expression.
(1-i)12+i2
(1-i)12+i2
Step 9
Multiply 12+i2 by 2-i22-i2.
(1-i)(12+i22-i22-i2)
Step 10
Simplify terms.
Tap for more steps...
Step 10.1
Multiply 12+i2 by 2-i22-i2.
(1-i)2-i2(2+i2)(2-i2)
Step 10.2
Expand the denominator using the FOIL method.
(1-i)2-i222-i22+i22-i222
Step 10.3
Simplify.
(1-i)2-i24
Step 10.4
Apply the distributive property.
12-i24-i2-i24
Step 10.5
Multiply 2-i24 by 1.
2-i24-i2-i24
Step 10.6
Combine 2-i24 and i.
2-i24-(2-i2)i4
Step 10.7
Combine the numerators over the common denominator.
2-i2-(2-i2)i4
2-i2-(2-i2)i4
Step 11
Simplify each term.
Tap for more steps...
Step 11.1
Apply the distributive property.
2-i2+(-2-(-i2))i4
Step 11.2
Multiply -(-i2).
Tap for more steps...
Step 11.2.1
Multiply -1 by -1.
2-i2+(-2+1(i2))i4
Step 11.2.2
Multiply 2 by 1.
2-i2+(-2+2i)i4
2-i2+(-2+2i)i4
Step 11.3
Apply the distributive property.
2-i2-2i+2ii4
Step 11.4
Multiply 2ii.
Tap for more steps...
Step 11.4.1
Raise i to the power of 1.
2-i2-2i+2(i1i)4
Step 11.4.2
Raise i to the power of 1.
2-i2-2i+2(i1i1)4
Step 11.4.3
Use the power rule aman=am+n to combine exponents.
2-i2-2i+2i1+14
Step 11.4.4
Add 1 and 1.
2-i2-2i+2i24
2-i2-2i+2i24
Step 11.5
Simplify each term.
Tap for more steps...
Step 11.5.1
Rewrite i2 as -1.
2-i2-2i+2-14
Step 11.5.2
Move -1 to the left of 2.
2-i2-2i-124
Step 11.5.3
Rewrite -12 as -2.
2-i2-2i-24
2-i2-2i-24
2-i2-2i-24
Step 12
Simplify terms.
Tap for more steps...
Step 12.1
Subtract 2 from 2.
-i2-2i+04
Step 12.2
Reorder the factors of -2i.
-i2-i2+04
Step 12.3
Subtract i2 from -i2.
-2i2+04
Step 12.4
Add -2i2 and 0.
-2i24
Step 12.5
Cancel the common factor of -2 and 4.
Tap for more steps...
Step 12.5.1
Factor 2 out of -2i2.
2(-i2)4
Step 12.5.2
Cancel the common factors.
Tap for more steps...
Step 12.5.2.1
Factor 2 out of 4.
2(-i2)2(2)
Step 12.5.2.2
Cancel the common factor.
2(-i2)22
Step 12.5.2.3
Rewrite the expression.
-i22
-i22
-i22
Step 12.6
Move the negative in front of the fraction.
-i22
-i22
 [x2  12  π  xdx ]