Enter a problem...
Basic Math Examples
√3(cos(315)+isin(315))√6(cos(45)+isin(45))
Step 1
Combine √3 and √6 into a single radical.
√36(cos(315)+isin(315))cos(45)+isin(45)
Step 2
Step 2.1
Factor 3 out of 3.
√3(1)6(cos(315)+isin(315))cos(45)+isin(45)
Step 2.2
Cancel the common factors.
Step 2.2.1
Factor 3 out of 6.
√3⋅13⋅2(cos(315)+isin(315))cos(45)+isin(45)
Step 2.2.2
Cancel the common factor.
√3⋅13⋅2(cos(315)+isin(315))cos(45)+isin(45)
Step 2.2.3
Rewrite the expression.
√12(cos(315)+isin(315))cos(45)+isin(45)
√12(cos(315)+isin(315))cos(45)+isin(45)
√12(cos(315)+isin(315))cos(45)+isin(45)
Step 3
Step 3.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
√12(cos(45)+isin(315))cos(45)+isin(45)
Step 3.2
The exact value of cos(45) is √22.
√12(√22+isin(315))cos(45)+isin(45)
Step 3.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
√12(√22+i(-sin(45)))cos(45)+isin(45)
Step 3.4
The exact value of sin(45) is √22.
√12(√22+i(-√22))cos(45)+isin(45)
Step 3.5
Combine i and √22.
√12(√22-i√22)cos(45)+isin(45)
Step 3.6
Rewrite √12 as √1√2.
√1√2(√22-i√22)cos(45)+isin(45)
Step 3.7
Any root of 1 is 1.
1√2(√22-i√22)cos(45)+isin(45)
Step 3.8
Multiply 1√2 by √2√2.
1√2⋅√2√2(√22-i√22)cos(45)+isin(45)
Step 3.9
Combine and simplify the denominator.
Step 3.9.1
Multiply 1√2 by √2√2.
√2√2√2(√22-i√22)cos(45)+isin(45)
Step 3.9.2
Raise √2 to the power of 1.
√2√21√2(√22-i√22)cos(45)+isin(45)
Step 3.9.3
Raise √2 to the power of 1.
√2√21√21(√22-i√22)cos(45)+isin(45)
Step 3.9.4
Use the power rule aman=am+n to combine exponents.
√2√21+1(√22-i√22)cos(45)+isin(45)
Step 3.9.5
Add 1 and 1.
√2√22(√22-i√22)cos(45)+isin(45)
Step 3.9.6
Rewrite √22 as 2.
Step 3.9.6.1
Use n√ax=axn to rewrite √2 as 212.
√2(212)2(√22-i√22)cos(45)+isin(45)
Step 3.9.6.2
Apply the power rule and multiply exponents, (am)n=amn.
√2212⋅2(√22-i√22)cos(45)+isin(45)
Step 3.9.6.3
Combine 12 and 2.
√2222(√22-i√22)cos(45)+isin(45)
Step 3.9.6.4
Cancel the common factor of 2.
Step 3.9.6.4.1
Cancel the common factor.
√2222(√22-i√22)cos(45)+isin(45)
Step 3.9.6.4.2
Rewrite the expression.
√221(√22-i√22)cos(45)+isin(45)
√221(√22-i√22)cos(45)+isin(45)
Step 3.9.6.5
Evaluate the exponent.
√22(√22-i√22)cos(45)+isin(45)
√22(√22-i√22)cos(45)+isin(45)
√22(√22-i√22)cos(45)+isin(45)
Step 3.10
Combine the numerators over the common denominator.
√22⋅√2-i√22cos(45)+isin(45)
√22⋅√2-i√22cos(45)+isin(45)
Step 4
Step 4.1
The exact value of cos(45) is √22.
√22⋅√2-i√22√22+isin(45)
Step 4.2
The exact value of sin(45) is √22.
√22⋅√2-i√22√22+i√22
Step 4.3
Combine i and √22.
√22⋅√2-i√22√22+i√22
Step 4.4
Combine the numerators over the common denominator.
√22⋅√2-i√22√2+i√22
√22⋅√2-i√22√2+i√22
Step 5
Step 5.1
Multiply √22 by √2-i√22.
√2(√2-i√2)2⋅2√2+i√22
Step 5.2
Multiply 2 by 2.
√2(√2-i√2)4√2+i√22
√2(√2-i√2)4√2+i√22
Step 6
Step 6.1
Apply the distributive property.
√2√2+√2(-i√2)4√2+i√22
Step 6.2
Combine using the product rule for radicals.
√2⋅2+√2(-i√2)4√2+i√22
Step 6.3
Multiply √2(-i√2).
Step 6.3.1
Raise √2 to the power of 1.
√2⋅2-i(√21√2)4√2+i√22
Step 6.3.2
Raise √2 to the power of 1.
√2⋅2-i(√21√21)4√2+i√22
Step 6.3.3
Use the power rule aman=am+n to combine exponents.
√2⋅2-i√21+14√2+i√22
Step 6.3.4
Add 1 and 1.
√2⋅2-i√224√2+i√22
√2⋅2-i√224√2+i√22
Step 6.4
Simplify each term.
Step 6.4.1
Multiply 2 by 2.
√4-i√224√2+i√22
Step 6.4.2
Rewrite 4 as 22.
√22-i√224√2+i√22
Step 6.4.3
Pull terms out from under the radical, assuming positive real numbers.
2-i√224√2+i√22
Step 6.4.4
Rewrite √22 as 2.
Step 6.4.4.1
Use n√ax=axn to rewrite √2 as 212.
2-i(212)24√2+i√22
Step 6.4.4.2
Apply the power rule and multiply exponents, (am)n=amn.
2-i⋅212⋅24√2+i√22
Step 6.4.4.3
Combine 12 and 2.
2-i⋅2224√2+i√22
Step 6.4.4.4
Cancel the common factor of 2.
Step 6.4.4.4.1
Cancel the common factor.
2-i⋅2224√2+i√22
Step 6.4.4.4.2
Rewrite the expression.
2-i⋅214√2+i√22
2-i⋅214√2+i√22
Step 6.4.4.5
Evaluate the exponent.
2-i⋅24√2+i√22
2-i⋅24√2+i√22
Step 6.4.5
Multiply 2 by -1.
2-2i4√2+i√22
2-2i4√2+i√22
Step 6.5
Cancel the common factor of 2-2i and 4.
Step 6.5.1
Factor 2 out of 2.
2(1)-2i4√2+i√22
Step 6.5.2
Factor 2 out of -2i.
2(1)+2(-i)4√2+i√22
Step 6.5.3
Factor 2 out of 2(1)+2(-i).
2(1-i)4√2+i√22
Step 6.5.4
Cancel the common factors.
Step 6.5.4.1
Factor 2 out of 4.
2(1-i)2⋅2√2+i√22
Step 6.5.4.2
Cancel the common factor.
2(1-i)2⋅2√2+i√22
Step 6.5.4.3
Rewrite the expression.
1-i2√2+i√22
1-i2√2+i√22
1-i2√2+i√22
1-i2√2+i√22
Step 7
Multiply the numerator by the reciprocal of the denominator.
1-i2⋅2√2+i√2
Step 8
Step 8.1
Cancel the common factor.
1-i2⋅2√2+i√2
Step 8.2
Rewrite the expression.
(1-i)1√2+i√2
(1-i)1√2+i√2
Step 9
Multiply 1√2+i√2 by √2-i√2√2-i√2.
(1-i)(1√2+i√2⋅√2-i√2√2-i√2)
Step 10
Step 10.1
Multiply 1√2+i√2 by √2-i√2√2-i√2.
(1-i)√2-i√2(√2+i√2)(√2-i√2)
Step 10.2
Expand the denominator using the FOIL method.
(1-i)√2-i√2√22-i√22+i√22-i2√22
Step 10.3
Simplify.
(1-i)√2-i√24
Step 10.4
Apply the distributive property.
1√2-i√24-i√2-i√24
Step 10.5
Multiply √2-i√24 by 1.
√2-i√24-i√2-i√24
Step 10.6
Combine √2-i√24 and i.
√2-i√24-(√2-i√2)i4
Step 10.7
Combine the numerators over the common denominator.
√2-i√2-(√2-i√2)i4
√2-i√2-(√2-i√2)i4
Step 11
Step 11.1
Apply the distributive property.
√2-i√2+(-√2-(-i√2))i4
Step 11.2
Multiply -(-i√2).
Step 11.2.1
Multiply -1 by -1.
√2-i√2+(-√2+1(i√2))i4
Step 11.2.2
Multiply √2 by 1.
√2-i√2+(-√2+√2i)i4
√2-i√2+(-√2+√2i)i4
Step 11.3
Apply the distributive property.
√2-i√2-√2i+√2ii4
Step 11.4
Multiply √2ii.
Step 11.4.1
Raise i to the power of 1.
√2-i√2-√2i+√2(i1i)4
Step 11.4.2
Raise i to the power of 1.
√2-i√2-√2i+√2(i1i1)4
Step 11.4.3
Use the power rule aman=am+n to combine exponents.
√2-i√2-√2i+√2i1+14
Step 11.4.4
Add 1 and 1.
√2-i√2-√2i+√2i24
√2-i√2-√2i+√2i24
Step 11.5
Simplify each term.
Step 11.5.1
Rewrite i2 as -1.
√2-i√2-√2i+√2⋅-14
Step 11.5.2
Move -1 to the left of √2.
√2-i√2-√2i-1⋅√24
Step 11.5.3
Rewrite -1√2 as -√2.
√2-i√2-√2i-√24
√2-i√2-√2i-√24
√2-i√2-√2i-√24
Step 12
Step 12.1
Subtract √2 from √2.
-i√2-√2i+04
Step 12.2
Reorder the factors of -√2i.
-i√2-i√2+04
Step 12.3
Subtract i√2 from -i√2.
-2i√2+04
Step 12.4
Add -2i√2 and 0.
-2i√24
Step 12.5
Cancel the common factor of -2 and 4.
Step 12.5.1
Factor 2 out of -2i√2.
2(-i√2)4
Step 12.5.2
Cancel the common factors.
Step 12.5.2.1
Factor 2 out of 4.
2(-i√2)2(2)
Step 12.5.2.2
Cancel the common factor.
2(-i√2)2⋅2
Step 12.5.2.3
Rewrite the expression.
-i√22
-i√22
-i√22
Step 12.6
Move the negative in front of the fraction.
-i√22
-i√22