Enter a problem...
Basic Math Examples
2⋅(2a−b⋅(2a−c⋅(2a−1)+2ac)−c)
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Apply the distributive property.
2⋅(2a−b⋅(2a−c(2a)−c⋅−1+2ac)−c)
Step 1.1.2
Rewrite using the commutative property of multiplication.
2⋅(2a−b⋅(2a−1⋅2ca−c⋅−1+2ac)−c)
Step 1.1.3
Multiply −c⋅−1.
Step 1.1.3.1
Multiply −1 by −1.
2⋅(2a−b⋅(2a−1⋅2ca+1c+2ac)−c)
Step 1.1.3.2
Multiply c by 1.
2⋅(2a−b⋅(2a−1⋅2ca+c+2ac)−c)
2⋅(2a−b⋅(2a−1⋅2ca+c+2ac)−c)
Step 1.1.4
Multiply −1 by 2.
2⋅(2a−b⋅(2a−2ca+c+2ac)−c)
2⋅(2a−b⋅(2a−2ca+c+2ac)−c)
Step 1.2
Combine the opposite terms in 2a−2ca+c+2ac.
Step 1.2.1
Reorder the factors in the terms −2ca and 2ac.
2⋅(2a−b⋅(2a−2ac+c+2ac)−c)
Step 1.2.2
Add −2ac and 2ac.
2⋅(2a−b⋅(2a+c+0)−c)
Step 1.2.3
Add 2a+c and 0.
2⋅(2a−b⋅(2a+c)−c)
2⋅(2a−b⋅(2a+c)−c)
Step 1.3
Apply the distributive property.
2⋅(2a−b(2a)−bc−c)
Step 1.4
Rewrite using the commutative property of multiplication.
2⋅(2a−1⋅2ba−bc−c)
Step 1.5
Multiply −1 by 2.
2⋅(2a−2ba−bc−c)
2⋅(2a−2ba−bc−c)
Step 2
Apply the distributive property.
2(2a)+2(−2ba)+2(−bc)+2(−c)
Step 3
Step 3.1
Multiply 2 by 2.
4a+2(−2ba)+2(−bc)+2(−c)
Step 3.2
Multiply −2 by 2.
4a−4(ba)+2(−bc)+2(−c)
Step 3.3
Multiply −1 by 2.
4a−4(ba)−2(bc)+2(−c)
Step 3.4
Multiply −1 by 2.
4a−4(ba)−2(bc)−2c
4a−4(ba)−2(bc)−2c
Step 4
Remove parentheses.
4a−4ba−2bc−2c
Step 5
Step 5.1
Move b.
4a−4ab−2bc−2c
Step 5.2
Move 4a.
−4ab−2bc+4a−2c
−4ab−2bc+4a−2c