Basic Math Examples

Simplify 2*(2a-b*(2a-c*(2a-1)+2ac)-c)
2(2ab(2ac(2a1)+2ac)c)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Apply the distributive property.
2(2ab(2ac(2a)c1+2ac)c)
Step 1.1.2
Rewrite using the commutative property of multiplication.
2(2ab(2a12cac1+2ac)c)
Step 1.1.3
Multiply c1.
Tap for more steps...
Step 1.1.3.1
Multiply 1 by 1.
2(2ab(2a12ca+1c+2ac)c)
Step 1.1.3.2
Multiply c by 1.
2(2ab(2a12ca+c+2ac)c)
2(2ab(2a12ca+c+2ac)c)
Step 1.1.4
Multiply 1 by 2.
2(2ab(2a2ca+c+2ac)c)
2(2ab(2a2ca+c+2ac)c)
Step 1.2
Combine the opposite terms in 2a2ca+c+2ac.
Tap for more steps...
Step 1.2.1
Reorder the factors in the terms 2ca and 2ac.
2(2ab(2a2ac+c+2ac)c)
Step 1.2.2
Add 2ac and 2ac.
2(2ab(2a+c+0)c)
Step 1.2.3
Add 2a+c and 0.
2(2ab(2a+c)c)
2(2ab(2a+c)c)
Step 1.3
Apply the distributive property.
2(2ab(2a)bcc)
Step 1.4
Rewrite using the commutative property of multiplication.
2(2a12babcc)
Step 1.5
Multiply 1 by 2.
2(2a2babcc)
2(2a2babcc)
Step 2
Apply the distributive property.
2(2a)+2(2ba)+2(bc)+2(c)
Step 3
Simplify.
Tap for more steps...
Step 3.1
Multiply 2 by 2.
4a+2(2ba)+2(bc)+2(c)
Step 3.2
Multiply 2 by 2.
4a4(ba)+2(bc)+2(c)
Step 3.3
Multiply 1 by 2.
4a4(ba)2(bc)+2(c)
Step 3.4
Multiply 1 by 2.
4a4(ba)2(bc)2c
4a4(ba)2(bc)2c
Step 4
Remove parentheses.
4a4ba2bc2c
Step 5
Reorder.
Tap for more steps...
Step 5.1
Move b.
4a4ab2bc2c
Step 5.2
Move 4a.
4ab2bc+4a2c
4ab2bc+4a2c
 x2  12  π  xdx