Enter a problem...
Basic Math Examples
u2-v2u-v÷uu2-vuu2−v2u−v÷uu2−vu
Step 1
To divide by a fraction, multiply by its reciprocal.
u2-v2u-v⋅u2-vuuu2−v2u−v⋅u2−vuu
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=ua=u and b=vb=v.
(u+v)(u-v)u-v⋅u2-vuu(u+v)(u−v)u−v⋅u2−vuu
Step 3
Step 3.1
Cancel the common factor of u-vu−v.
Step 3.1.1
Cancel the common factor.
(u+v)(u-v)u-v⋅u2-vuu
Step 3.1.2
Divide u+v by 1.
(u+v)u2-vuu
(u+v)u2-vuu
Step 3.2
Factor u out of u2-vu.
Step 3.2.1
Factor u out of u2.
(u+v)u⋅u-vuu
Step 3.2.2
Factor u out of -vu.
(u+v)u⋅u+u(-v)u
Step 3.2.3
Factor u out of u⋅u+u(-v).
(u+v)u(u-v)u
(u+v)u(u-v)u
Step 3.3
Cancel the common factor of u.
Step 3.3.1
Cancel the common factor.
(u+v)u(u-v)u
Step 3.3.2
Divide u-v by 1.
(u+v)(u-v)
(u+v)(u-v)
(u+v)(u-v)
Step 4
Step 4.1
Apply the distributive property.
u(u-v)+v(u-v)
Step 4.2
Apply the distributive property.
u⋅u+u(-v)+v(u-v)
Step 4.3
Apply the distributive property.
u⋅u+u(-v)+vu+v(-v)
u⋅u+u(-v)+vu+v(-v)
Step 5
Step 5.1
Combine the opposite terms in u⋅u+u(-v)+vu+v(-v).
Step 5.1.1
Reorder the factors in the terms u(-v) and vu.
u⋅u-uv+uv+v(-v)
Step 5.1.2
Add -uv and uv.
u⋅u+0+v(-v)
Step 5.1.3
Add u⋅u and 0.
u⋅u+v(-v)
u⋅u+v(-v)
Step 5.2
Simplify each term.
Step 5.2.1
Multiply u by u.
u2+v(-v)
Step 5.2.2
Rewrite using the commutative property of multiplication.
u2-v⋅v
Step 5.2.3
Multiply v by v by adding the exponents.
Step 5.2.3.1
Move v.
u2-(v⋅v)
Step 5.2.3.2
Multiply v by v.
u2-v2
u2-v2
u2-v2
u2-v2