Basic Math Examples

Simplify ((u^2-v^2)/(u-v))÷(u/(u^2-vu))
u2-v2u-v÷uu2-vuu2v2uv÷uu2vu
Step 1
To divide by a fraction, multiply by its reciprocal.
u2-v2u-vu2-vuuu2v2uvu2vuu
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=ua=u and b=vb=v.
(u+v)(u-v)u-vu2-vuu(u+v)(uv)uvu2vuu
Step 3
Simplify terms.
Tap for more steps...
Step 3.1
Cancel the common factor of u-vuv.
Tap for more steps...
Step 3.1.1
Cancel the common factor.
(u+v)(u-v)u-vu2-vuu
Step 3.1.2
Divide u+v by 1.
(u+v)u2-vuu
(u+v)u2-vuu
Step 3.2
Factor u out of u2-vu.
Tap for more steps...
Step 3.2.1
Factor u out of u2.
(u+v)uu-vuu
Step 3.2.2
Factor u out of -vu.
(u+v)uu+u(-v)u
Step 3.2.3
Factor u out of uu+u(-v).
(u+v)u(u-v)u
(u+v)u(u-v)u
Step 3.3
Cancel the common factor of u.
Tap for more steps...
Step 3.3.1
Cancel the common factor.
(u+v)u(u-v)u
Step 3.3.2
Divide u-v by 1.
(u+v)(u-v)
(u+v)(u-v)
(u+v)(u-v)
Step 4
Expand (u+v)(u-v) using the FOIL Method.
Tap for more steps...
Step 4.1
Apply the distributive property.
u(u-v)+v(u-v)
Step 4.2
Apply the distributive property.
uu+u(-v)+v(u-v)
Step 4.3
Apply the distributive property.
uu+u(-v)+vu+v(-v)
uu+u(-v)+vu+v(-v)
Step 5
Simplify terms.
Tap for more steps...
Step 5.1
Combine the opposite terms in uu+u(-v)+vu+v(-v).
Tap for more steps...
Step 5.1.1
Reorder the factors in the terms u(-v) and vu.
uu-uv+uv+v(-v)
Step 5.1.2
Add -uv and uv.
uu+0+v(-v)
Step 5.1.3
Add uu and 0.
uu+v(-v)
uu+v(-v)
Step 5.2
Simplify each term.
Tap for more steps...
Step 5.2.1
Multiply u by u.
u2+v(-v)
Step 5.2.2
Rewrite using the commutative property of multiplication.
u2-vv
Step 5.2.3
Multiply v by v by adding the exponents.
Tap for more steps...
Step 5.2.3.1
Move v.
u2-(vv)
Step 5.2.3.2
Multiply v by v.
u2-v2
u2-v2
u2-v2
u2-v2
 [x2  12  π  xdx ]