Enter a problem...
Basic Math Examples
635-313635−313
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
6+35-3136+35−313
Step 1.2
Add 66 and 3535.
Step 1.2.1
To write 66 as a fraction with a common denominator, multiply by 5555.
6⋅55+35-3136⋅55+35−313
Step 1.2.2
Combine 66 and 5555.
6⋅55+35-3136⋅55+35−313
Step 1.2.3
Combine the numerators over the common denominator.
6⋅5+35-3136⋅5+35−313
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 66 by 55.
30+35-31330+35−313
Step 1.2.4.2
Add 3030 and 33.
335-313335−313
335-313335−313
335-313335−313
335-313335−313
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
335-(3+13)335−(3+13)
Step 2.2
Add 33 and 1313.
Step 2.2.1
To write 33 as a fraction with a common denominator, multiply by 3333.
335-(3⋅33+13)
Step 2.2.2
Combine 3 and 33.
335-(3⋅33+13)
Step 2.2.3
Combine the numerators over the common denominator.
335-3⋅3+13
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 3 by 3.
335-9+13
Step 2.2.4.2
Add 9 and 1.
335-103
335-103
335-103
335-103
Step 3
To write 335 as a fraction with a common denominator, multiply by 33.
335⋅33-103
Step 4
To write -103 as a fraction with a common denominator, multiply by 55.
335⋅33-103⋅55
Step 5
Step 5.1
Multiply 335 by 33.
33⋅35⋅3-103⋅55
Step 5.2
Multiply 5 by 3.
33⋅315-103⋅55
Step 5.3
Multiply 103 by 55.
33⋅315-10⋅53⋅5
Step 5.4
Multiply 3 by 5.
33⋅315-10⋅515
33⋅315-10⋅515
Step 6
Combine the numerators over the common denominator.
33⋅3-10⋅515
Step 7
Step 7.1
Multiply 33 by 3.
99-10⋅515
Step 7.2
Multiply -10 by 5.
99-5015
Step 7.3
Subtract 50 from 99.
4915
4915
Step 8
The result can be shown in multiple forms.
Exact Form:
4915
Decimal Form:
3.2‾6
Mixed Number Form:
3415