Enter a problem...
Basic Math Examples
4215-21145
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
4+215-21145
Step 1.2
Add 4 and 215.
Step 1.2.1
To write 4 as a fraction with a common denominator, multiply by 1515.
4⋅1515+215-21145
Step 1.2.2
Combine 4 and 1515.
4⋅1515+215-21145
Step 1.2.3
Combine the numerators over the common denominator.
4⋅15+215-21145
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 4 by 15.
60+215-21145
Step 1.2.4.2
Add 60 and 2.
6215-21145
6215-21145
6215-21145
6215-21145
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
6215-(2+1145)
Step 2.2
Add 2 and 1145.
Step 2.2.1
To write 2 as a fraction with a common denominator, multiply by 4545.
6215-(2⋅4545+1145)
Step 2.2.2
Combine 2 and 4545.
6215-(2⋅4545+1145)
Step 2.2.3
Combine the numerators over the common denominator.
6215-2⋅45+1145
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 2 by 45.
6215-90+1145
Step 2.2.4.2
Add 90 and 11.
6215-10145
6215-10145
6215-10145
6215-10145
Step 3
To write 6215 as a fraction with a common denominator, multiply by 33.
6215⋅33-10145
Step 4
Step 4.1
Multiply 6215 by 33.
62⋅315⋅3-10145
Step 4.2
Multiply 15 by 3.
62⋅345-10145
62⋅345-10145
Step 5
Combine the numerators over the common denominator.
62⋅3-10145
Step 6
Step 6.1
Multiply 62 by 3.
186-10145
Step 6.2
Subtract 101 from 186.
8545
8545
Step 7
Step 7.1
Factor 5 out of 85.
5(17)45
Step 7.2
Cancel the common factors.
Step 7.2.1
Factor 5 out of 45.
5⋅175⋅9
Step 7.2.2
Cancel the common factor.
5⋅175⋅9
Step 7.2.3
Rewrite the expression.
179
179
179
Step 8
The result can be shown in multiple forms.
Exact Form:
179
Decimal Form:
1.‾8
Mixed Number Form:
189