Enter a problem...
Basic Math Examples
3a2+3ab+3ac-(2ab-2b2-2bc)3a2+3ab+3ac−(2ab−2b2−2bc)
Step 1
Step 1.1
Apply the distributive property.
3a2+3ab+3ac-(2ab)-(-2b2)-(-2bc)3a2+3ab+3ac−(2ab)−(−2b2)−(−2bc)
Step 1.2
Simplify.
Step 1.2.1
Multiply 22 by -1−1.
3a2+3ab+3ac-2(ab)-(-2b2)-(-2bc)3a2+3ab+3ac−2(ab)−(−2b2)−(−2bc)
Step 1.2.2
Multiply -2−2 by -1−1.
3a2+3ab+3ac-2(ab)+2b2-(-2bc)3a2+3ab+3ac−2(ab)+2b2−(−2bc)
Step 1.2.3
Multiply -2−2 by -1−1.
3a2+3ab+3ac-2(ab)+2b2+2(bc)3a2+3ab+3ac−2(ab)+2b2+2(bc)
3a2+3ab+3ac-2(ab)+2b2+2(bc)3a2+3ab+3ac−2(ab)+2b2+2(bc)
Step 1.3
Remove parentheses.
3a2+3ab+3ac-2ab+2b2+2bc3a2+3ab+3ac−2ab+2b2+2bc
3a2+3ab+3ac-2ab+2b2+2bc3a2+3ab+3ac−2ab+2b2+2bc
Step 2
Step 2.1
Subtract 2ab2ab from 3ab3ab.
3a2+1ab+3ac+2b2+2bc3a2+1ab+3ac+2b2+2bc
Step 2.2
Simplify the expression.
Step 2.2.1
Multiply aa by 11.
3a2+ab+3ac+2b2+2bc3a2+ab+3ac+2b2+2bc
Step 2.2.2
Move 2b22b2.
3a2+ab+3ac+2bc+2b23a2+ab+3ac+2bc+2b2
Step 2.2.3
Move abab.
3a2+3ac+2bc+ab+2b23a2+3ac+2bc+ab+2b2
Step 2.2.4
Move 3a23a2.
3ac+2bc+3a2+ab+2b23ac+2bc+3a2+ab+2b2
3ac+2bc+3a2+ab+2b23ac+2bc+3a2+ab+2b2
3ac+2bc+3a2+ab+2b23ac+2bc+3a2+ab+2b2