Enter a problem...
Basic Math Examples
43121-27514
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
43+121-27514
Step 1.2
Add 43 and 121.
Step 1.2.1
To write 43 as a fraction with a common denominator, multiply by 2121.
43⋅2121+121-27514
Step 1.2.2
Combine 43 and 2121.
43⋅2121+121-27514
Step 1.2.3
Combine the numerators over the common denominator.
43⋅21+121-27514
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 43 by 21.
903+121-27514
Step 1.2.4.2
Add 903 and 1.
90421-27514
90421-27514
90421-27514
90421-27514
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
90421-(27+514)
Step 2.2
Add 27 and 514.
Step 2.2.1
To write 27 as a fraction with a common denominator, multiply by 1414.
90421-(27⋅1414+514)
Step 2.2.2
Combine 27 and 1414.
90421-(27⋅1414+514)
Step 2.2.3
Combine the numerators over the common denominator.
90421-27⋅14+514
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 27 by 14.
90421-378+514
Step 2.2.4.2
Add 378 and 5.
90421-38314
90421-38314
90421-38314
90421-38314
Step 3
To write 90421 as a fraction with a common denominator, multiply by 22.
90421⋅22-38314
Step 4
To write -38314 as a fraction with a common denominator, multiply by 33.
90421⋅22-38314⋅33
Step 5
Step 5.1
Multiply 90421 by 22.
904⋅221⋅2-38314⋅33
Step 5.2
Multiply 21 by 2.
904⋅242-38314⋅33
Step 5.3
Multiply 38314 by 33.
904⋅242-383⋅314⋅3
Step 5.4
Multiply 14 by 3.
904⋅242-383⋅342
904⋅242-383⋅342
Step 6
Combine the numerators over the common denominator.
904⋅2-383⋅342
Step 7
Step 7.1
Multiply 904 by 2.
1808-383⋅342
Step 7.2
Multiply -383 by 3.
1808-114942
Step 7.3
Subtract 1149 from 1808.
65942
65942
Step 8
The result can be shown in multiple forms.
Exact Form:
65942
Decimal Form:
15.69047619…
Mixed Number Form:
152942