Enter a problem...
Basic Math Examples
4834÷212
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
(48+34)÷212
Step 1.2
Add 48 and 34.
Step 1.2.1
To write 48 as a fraction with a common denominator, multiply by 44.
(48⋅44+34)÷212
Step 1.2.2
Combine 48 and 44.
(48⋅44+34)÷212
Step 1.2.3
Combine the numerators over the common denominator.
48⋅4+34÷212
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 48 by 4.
192+34÷212
Step 1.2.4.2
Add 192 and 3.
1954÷212
1954÷212
1954÷212
1954÷212
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
1954÷(2+12)
Step 2.2
Add 2 and 12.
Step 2.2.1
To write 2 as a fraction with a common denominator, multiply by 22.
1954÷(2⋅22+12)
Step 2.2.2
Combine 2 and 22.
1954÷(2⋅22+12)
Step 2.2.3
Combine the numerators over the common denominator.
1954÷2⋅2+12
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 2 by 2.
1954÷4+12
Step 2.2.4.2
Add 4 and 1.
1954÷52
1954÷52
1954÷52
1954÷52
Step 3
To divide by a fraction, multiply by its reciprocal.
1954⋅25
Step 4
Step 4.1
Factor 5 out of 195.
5(39)4⋅25
Step 4.2
Cancel the common factor.
5⋅394⋅25
Step 4.3
Rewrite the expression.
394⋅2
394⋅2
Step 5
Step 5.1
Factor 2 out of 4.
392(2)⋅2
Step 5.2
Cancel the common factor.
392⋅2⋅2
Step 5.3
Rewrite the expression.
392
392
Step 6
The result can be shown in multiple forms.
Exact Form:
392
Decimal Form:
19.5
Mixed Number Form:
1912