Enter a problem...
Basic Math Examples
4a-3(-4ay)2(-y)-34a−3(−4ay)2(−y)−3
Step 1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
41a3(-4ay)2(-y)-341a3(−4ay)2(−y)−3
Step 2
Combine 44 and 1a31a3.
4a3(-4ay)2(-y)-34a3(−4ay)2(−y)−3
Step 3
Step 3.1
Apply the product rule to -4ay−4ay.
4a3((-4a)2y2)(-y)-34a3((−4a)2y2)(−y)−3
Step 3.2
Apply the product rule to -4a−4a.
4a3((-4)2a2y2)(-y)-34a3((−4)2a2y2)(−y)−3
4a3((-4)2a2y2)(-y)-34a3((−4)2a2y2)(−y)−3
Step 4
Rewrite using the commutative property of multiplication.
(-4)24a3(a2y2)(-y)-3(−4)24a3(a2y2)(−y)−3
Step 5
Raise -4−4 to the power of 22.
164a3(a2y2)(-y)-3164a3(a2y2)(−y)−3
Step 6
Step 6.1
Combine 1616 and 4a34a3.
16⋅4a3(a2y2)(-y)-316⋅4a3(a2y2)(−y)−3
Step 6.2
Multiply 1616 by 44.
64a3(a2y2)(-y)-364a3(a2y2)(−y)−3
64a3(a2y2)(-y)-364a3(a2y2)(−y)−3
Step 7
Step 7.1
Factor a2a2 out of a3a3.
64a2a(a2y2)(-y)-364a2a(a2y2)(−y)−3
Step 7.2
Factor a2a2 out of a2y2a2y2.
64a2a(a2(y2))(-y)-364a2a(a2(y2))(−y)−3
Step 7.3
Cancel the common factor.
64a2a(a2y2)(-y)-3
Step 7.4
Rewrite the expression.
64ay2(-y)-3
64ay2(-y)-3
Step 8
Combine 64a and y2.
64y2a(-y)-3
Step 9
Rewrite the expression using the negative exponent rule b-n=1bn.
64y2a⋅1(-y)3
Step 10
Combine.
64y2⋅1a(-y)3
Step 11
Step 11.1
Factor -1 out of y.
64(-1(-y))2⋅1a(-y)3
Step 11.2
Apply the product rule to -1(-y).
64((-1)2(-y)2)⋅1a(-y)3
Step 11.3
Raise -1 to the power of 2.
64(1(-y)2)⋅1a(-y)3
Step 11.4
Multiply (-y)2 by 1.
64(-y)2⋅1a(-y)3
Step 11.5
Factor (-y)2 out of 64(-y)2⋅1.
(-y)2(64⋅1)a(-y)3
Step 11.6
Cancel the common factors.
Step 11.6.1
Factor (-y)2 out of a(-y)3.
(-y)2(64⋅1)(-y)2(a(-y))
Step 11.6.2
Cancel the common factor.
(-y)2(64⋅1)(-y)2(a(-y))
Step 11.6.3
Rewrite the expression.
64⋅1a(-y)
64⋅1a(-y)
64⋅1a(-y)
Step 12
Step 12.1
Rewrite 1 as -1(-1).
64⋅(-1(-1))a(-y)
Step 12.2
Move the negative in front of the fraction.
-64a(y)
-64ay